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ABSTRACT: We present an overview of our computational approach
towards understanding the different contributions of the neocortex and
hippocampus in learning and memory. The approach is based on a set of
principles derived from converging biological, psychological, and compu-
tational constraints. The most central principles are that the neocortex
employs a slow learning rate and overlapping distributed representations
to extract the general statistical structure of the environment, while the
hippocampus learns rapidly, using separated representations to encode
the details of specific events while suffering minimal interference. Addi-
tional principles concern the nature of learning (error-driven and Heb-
bian), and recall of information via pattern completion. We summarize
the results of applying these principles to a wide range of phenomena in
conditioning, habituation, contextual learning, recognition memory, re-
call, and retrograde amnesia, and we point to directions of current
development. Hippocampus 2000;10:389–397. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

This paper presents a computational approach towards understanding the
different contributions of the neocortex and hippocampus in learning and
memory. This approach uses basic principles of computational neural net-
work learning mechanisms to understand both what is different about the
way these two neural systems learn, and why they should have these differ-
ences. Thus, the computational approach can go beyond mere description
towards understanding the deeper principles underlying the organization of
the cognitive system. These principles are based on a convergence of biolog-
ical, psychological, and computational constraints, and serve to bridge the
gaps between these different levels of analysis.

The set of principles discussed in this paper were first developed in Mc-
Clelland et al. (1995), and have been refined several times since then
(O’Reilly et al., 1998; O’Reilly and Rudy, 2000). The computational prin-
ciples have been applied to a wide range of learning and memory phenomena
across several species (rats, monkeys, and humans). For example, they can
account for impaired and preserved learning capacities with hippocampal
lesions in conditioning, habituation, contextual learning, recognition mem-
ory, recall, and retrograde amnesia. This paper provides a concise summary
of previous work, and a discussion of current and future directions.

THE PRINCIPLES

There are several levels of principles that can be distin-
guished by their degree of specificity in characterizing the
nature of the underlying mechanisms. We begin with the
most basic principles and proceed towards greater speci-
ficity.

Learning Rate, Overlap, and Interference

The most basic set of principles can be motivated by
considering how subsequent learning can interfere with
prior learning. A classic example of this kind of interfer-
ence can be found in the AB-AC associative learning task
(e.g., Barnes and Underwood, 1959). The A represents
one set of words that are associated with two different sets
of other words, B and C. For example, the word window
will be associated with the word reason in the AB list, and
associated with locomotive on the AC list. After studying
the AB list of associates, subjects are tested by asking
them to give the appropriate B associate for each of the A
words. Then, subjects study the AC list (often over mul-
tiple iterations), and are subsequently tested on both lists
for recall of the associates after each iteration of learning
the AC list. Subjects exhibit some level of interference on
the initially learned AB associations as a result of learning
the AC list, but they still remember a reasonable percent-
age (see Fig. 1a for representative data).

The first set of principles concerns the effects of over-
lapping representations (i.e., shared units between two
different distributed representations) and rate of learning
on the ability to rapidly learn new information with a
level of interference characteristic of human subjects:

• Overlapping representations lead to interference (con-
versely, separated representations prevent interference).
• A faster learning rate causes more interference (con-
versely, a slower learning rate causes less interference).

The mechanistic basis for these principles within a
neural network perspective is straightforward. Interfer-
ence is caused when weights used to encode one associa-
tion are disturbed by the encoding of another (Fig. 2a).
Overlapping patterns share more weights, and therefore
lead to greater amounts of interference. Clearly, if en-
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tirely separate representations are used to encode two different
associations, then there will be no interference whatsoever (Fig.
2b). The story with learning rate is similarly straightforward. Faster
learning rates lead to more weight change, and thus greater inter-
ference (Fig. 3). However, a fast learning rate is necessary for rapid
learning.

Integration and Extracting Statistical Structure

Figure 3 shows the flip side of the interference story, i.e., inte-
gration. If the learning rate is low, then the weights will integrate
over many experiences, reflecting the underlying statistics of the
environment (White, 1989; McClelland et al., 1995). Further-
more, overlapping representations facilitate this integration pro-
cess, because the same weights need to be reused across many
different experiences to enable the integration produced by a slow
learning rate. This leads to the next principle:

• Integration across experiences to extract underlying statistical
structure requires a slow learning rate and overlapping representa-
tions.

Episodic Memory and Generalization:
Incompatible Functions

Thus, focusing only on pattern overlap for the moment, we can
see that networks can be optimized for two different, and incom-
patible, functions: avoiding interference, or integrating across ex-
periences to extract generalities. Avoiding interference requires
separated representations, while integration requires overlapping
representations. These two functions each have clear functional
advantages, leading to a further set of principles:

• Interference avoidance is essential for episodic memory, which
requires learning about the specifics of individual events and keep-
ing them separate from other events.
• Integration is essential for encoding the general statistical
structure of the environment, abstracted away from the specifics
of individual events, which enables generalization to novel sit-
uations.

The incompatibility between these functions is further evi-
dent in these descriptions (e.g., encoding specifics vs. abstract-
ing away from them). Also, episodic memory requires relatively
rapid learning: an event must be encoded as it happens, and
does not typically repeat itself for further learning opportuni-
ties. This completes a pattern of opposition between these func-
tions: episodic learning requires rapid learning, while integra-
tion and generalization require slow learning. This is summarized
in the following principle:

• Episodic memory and extracting generalities are in opposition.
Episodic memory requires rapid learning and separated patterns,
while extracting generalities requires slow learning and overlapping
patterns.

FIGURE 1. Human and model data for AB-AC list learning. a:
Humans show some interference for the AB list items as a function of
new learning on the AC list items. b: Model shows a catastrophic level
of interference (data reproduced from McCloskey and Cohen, 1989).

FIGURE 2. Interference as a function of overlapping (same) rep-
resentations vs. separated representations. a: Using the same represen-
tation to encode two different associations (A3 B and A3C) causes
interference: the subsequent learning of A 3 C interferes with the
prior learning of A 3 B because the A stimulus must have stronger
weights to C than to B for the second association, as is reflected in the
weights. b: A separated representation, where A is encoded separately
for the first list (A1) vs. the second list (A2) prevents interference.

FIGURE 3. Weight value learning about a single input unit that
is either active or not. The weight increases when the input is on, and
decreases when it is off, in proportion to the size of the learning rate.
The input has an overall probability of being active of 0.7. Larger
learning rates (0.1 or 1) lead to more interference on prior learning,
resulting in a weight value that bounces around substantially with
each training example. In the extreme case of a learning rate of 1, the
weight only reflects what happened on the previous trial, retaining no
memory for prior events at all. As the learning rate gets smaller
(0.005), the weight smoothly averages over individual events and
reflects the overall statistical probability of the input being active.
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Applying the Principles to the Hippocampus
and Neocortex

Armed with these principles, the finding that neural network
models that have highly overlapping representations exhibit cata-
strophic levels of interference (McCloskey and Cohen, 1989, Fig.
1b) should not be surprising. A number of researchers showed that
this interference can be reduced by introducing various factors that
result in less pattern overlap (e.g., Kortge, 1993; French, 1992;
Sloman and Rumelhart, 1992; McRae and Hetherington, 1993).
Thus, instead of concluding that neural networks are fundamen-
tally flawed, as McCloskey and Cohen (1989) argued (and a num-
ber of others have uncritically accepted), McClelland et al. (1995)
argued that this catastrophic failure serves as an important clue into
the structure of the human brain.

Specifically, we argued that because of the fundamental incom-
patibility between episodic memory and extracting generalities, the
brain should employ two separate systems that each optimize these
two objectives individually, instead of having a single system that
tries to strike an inferior compromise. This line of reasoning pro-
vides a strikingly good fit to the known properties of the hip-
pocampus and neocortex, respectively. The details of this fit in
various contexts is the substance of the remainder of the paper, but
the general idea is that:

• The hippocampus rapidly binds together information, using
pattern-separated representations to minimize interference.
• The neocortex slowly learns about the general statistical struc-
ture of the environment, using overlapping distributed represen-
tations.

See also Sherry and Schacter (1987) for a similar conclusion.
Before discussing the details, a few more principles need to be
developed first.

Conjunctive Representations and Nonlinear
Discrimination Learning

The conjunctive or configural representations theory provides a
converging line of thinking about the nature of hippocampal func-
tion (Sutherland and Rudy, 1989; Rudy and Sutherland, 1995;
Wickelgren, 1979; O’Reilly and Rudy, 2000). A conjunctive/con-
figural representation is one that binds together (conjoins or con-
figures) multiple elements into a novel unitary representation. This
is consistent with the description of hippocampal function given
above, based on the need to separate patterns to avoid interference.
Indeed, it is clear that pattern separation and conjunctive represen-
tations are two sides of the same coin, and that both are caused by
the use of sparse representations (having relatively few active neu-
rons) that are a known property of the hippocampus (O’Reilly and
McClelland, 1994; O’Reilly and Rudy, 2000). To summarize:

• Sparse hippocampal representations lead to pattern separation
(to avoid interference) and conjunctive representations (to bind
together features into a unitary representation).

One important application of the conjunctive representations
idea has been to solve nonlinear discrimination problems. These

problems require conjunctive representations to solve because each
of the individual stimuli is ambiguous (equally often rewarded and
not rewarded). The negative patterning problem is a good exam-
ple. It involves two stimuli, A and B (e.g., a light and a tone), which
are associated with reward (indicated by 1) or not (2). Three
different trial types are trained: A1, B1, AB2. Thus, the conjunc-
tion of the two stimuli (AB2) must be treated differently from the
two stimuli separately (A1, B1). A conjunctive representation
that forms a novel encoding of the two stimuli together can facil-
itate this form of learning. Therefore, the fact that hippocampal
damage impairs learning the negative patterning problem (Al-
varado and Rudy, 1995; Rudy and Sutherland, 1995; McDonald
et al., 1997) would appear to support the idea that the hippocam-
pus employs pattern separated, conjunctive representations. How-
ever, it is now clear that a number of other nonlinear discrimina-
tion learning problems are unimpaired by hippocampal damage
(Rudy and Sutherland, 1995). The next set of principles helps to
make sense of these data so that they can be reconciled with our
interference-based principles of conjunctive pattern separation, as
discussed below.

Pattern Completion: Recalling a Conjunction

Pattern completion is required for recalling information from
conjunctive hippocampal representations, yet it conflicts with the
process of pattern separation that forms these representations in
the first place (O’Reilly and McClelland, 1994). Pattern comple-
tion occurs when a partial input cue drives the hippocampus to
complete an entire previously encoded set of features that were
bound together in a conjunctive representation. For a given input
pattern, a decision must be made to recognize it as a retrieval cue
for a previous memory and perform pattern completion, or to
perform pattern separation and store the input as a new memory.
This decision is often difficult, given noisy inputs and degraded
memories. The hippocampus implements this decision as the ef-
fect of a set of basic mechanisms operating on input patterns
(O’Reilly and McClelland, 1994; Hasselmo and Wyble, 1997),
and it does not always do what would seem to be the right thing to
do from an omniscient perspective of knowing all the relevant task
factors: this can complicate the involvement of the hippocampus in
nonlinear discrimination problems.

Learning Mechanisms: Hebbian and Error-
Driven

To more fully explain the roles of the hippocampus and neocor-
tex, we need to understand how learning works in these systems
(the basic principles just described do not depend on the detailed
nature of the learning mechanisms; White, 1989). There are two
basic mechanisms that have been discussed in the literature, Heb-
bian and error-driven learning (e.g., Marr, 1971; McNaughton
and Morris, 1987; Gluck and Myers, 1993; Schmajuk and Di-
Carlo, 1992). Briefly, Hebbian learning (Hebb, 1949) works by
increasing weights between coactive neurons (and usually decreas-
ing weights when a receiver is active and the sender is not), which
is a well-established property of biological synaptic modification
mechanisms (e.g., Collingridge and Bliss, 1987). Hebbian learning
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is useful for binding together features active at the same time (e.g.,
within the same episode), and has therefore been widely suggested
as a hippocampal learning mechanism (e.g., Marr, 1971; Mc-
Naughton and Morris, 1987).

Error-driven learning works by adjusting weights to minimize
the errors in a network’s performance, with the best example of this
being the error backpropagation algorithm (Rumelhart et al., 1986).
Error-driven learning is sensitive to task demands in a way that
Hebbian learning is not, and this makes it a much more capable
form of learning for actually achieving a desired input/output map-
ping. Thus, it is natural to associate this form of learning with the
kind of procedural or task-driven learning that the neocortex is
often thought to specialize in (e.g., because amnesics with hip-
pocampal damage have preserved procedural learning abilities).
Although the backpropagation mechanism has been widely chal-
lenged as biologically implausible (e.g., Crick, 1989; Zipser and
Andersen, 1988), a recent analysis showed that simple biologically
based mechanisms can be used to implement this mechanism
(O’Reilly, 1996), so that it is quite reasonable to assume that the
cortex depends on this kind of learning.

Although the association of Hebbian learning with the hip-
pocampus and error-driven learning with the cortex is appealing in
some ways, it turns out that both kinds of learning can play im-
portant roles in both systems (O’Reilly and Rudy, 2000; O’Reilly
and Munakata, 2000; O’Reilly, 1998). Thus, the specific learning
principles adopted here are that both forms of learning operate in
both systems:

• Hebbian learning binds together co-occurring features (in the
hippocampus) and generally learns about the co-occurrence statis-
tics in the environment across many different patterns (in the
neocortex).
• Error-driven learning shapes learning according to specific task
demands (shifting the balance of pattern separation and comple-
tion in the hippocampus, and developing task-appropriate repre-
sentations in the neocortex).

It is the existence of this task-driven learning that complicates
the picture for nonlinear discrimination learning problems.

A Summary of Principles

The above principles can be summarized with the following
three general statements of neocortical and hippocampal learning
properties (O’Reilly and Rudy, 1999):

Learning rate

The cortical system typically learns slowly, while the hippocam-
pal system typically learns rapidly.

Conjunctive bias

The cortical system has a bias towards integrating over specific
instances to extract generalities. The hippocampal system is biased
by its intrinsic sparseness to develop conjunctive representations of
specific instances of environmental inputs. However, this conjunc-
tive bias trades off with the countervailing process of pattern com-

pletion, so the hippocampus does not always develop new conjunc-
tive representations (sometimes it completes to existing ones).

Learning mechanisms

Both the cortex and hippocampus use error-driven and Hebbian
learning. The error-driven aspect responds to task demands, and
will cause the network to learn to represent whatever is needed to
achieve goals or ends. Thus, the cortex can overcome its bias and
develop specific, conjunctive representations if the task demands
this. Also, error-driven learning can shift the hippocampus from
performing pattern separation to performing pattern completion,
or vice-versa, as dictated by the task. Hebbian learning is constantly
operating, and reinforcing the representations that are activated in
the two systems.

These principles are focused on distinguishing the neocortex
and hippocampus. We have also articulated a more complete set of
principles that are largely common to both systems (O’Reilly,
1998; O’Reilly and Munakata, 2000). Models incorporating these
principles have been extensively applied to a wide range of different
cortical phenomena, including perception, language, and higher-
level cognition. Next, we highlight the application of principles
presented here to learning and memory phenomena involving both
the cortex and hippocampus.

APPLICATIONS OF THE PRINCIPLES

The principles just developed have been applied to a number of
different domains, as summarized below. In most cases, the same
neural network model developed according to these principles
(O’Reilly and Rudy, 2000) was used to simulate the empirical data,
providing a compelling demonstration that the principles are suf-
ficient to account for a wide range of findings.

Conjunctions and Nonlinear Discrimination
Learning

We first apply the above principles to the puzzling pattern of
hippocampal involvement in nonlinear discrimination learning
problems. The general statement of the issue is that although we
think the hippocampus is specialized for encoding conjunctive
bindings of stimuli (and keeping these separated from each other to
minimize interference), apparently direct tests of this idea in the
form of nonlinear discrimination learning problems have not pro-
vided clear support. Specifically, rats with hippocampal lesions can
learn a number of these nonlinear discrimination problems just
like intact rats. The general explanation of these results according
to the full set of principles outlined above is that:

• The explicit task demands present in a nonlinear discrimination
learning problem cause the cortex alone (with a lesioned hip-
pocampus) to learn the task via error-driven learning.
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• Nonlinear discrimination problems take many trials to learn
even in intact animals, allowing the slow cortical learning to accu-
mulate a solution.
• The absence of hippocampal learning speed advantages in nor-
mal rats, despite the more rapid hippocampal learning rate, can be
explained by the fact that the hippocampus is engaging in pattern
completion in these problems, instead of pattern separation.

We substantiated this verbal account by running computational
neural network simulations that embodied the principles devel-
oped above (O’Reilly and Rudy, 2000) (Fig. 4). These simulations
showed that in many (but not all) cases, removing the hippocampal
component did not significantly impair learning performance on
nonlinear discrimination learning problems, matching the empir-
ical data. Figure 5 shows one specific example, where the negative
patterning problem discussed previously (A1, B1, AB2) is im-
paired with hippocampal lesions, but performance is not impaired
on a very similar ambiguous feature problem, AC1, B1, AB2,
C2, (Gallagher and Holland, 1992). See O’Reilly and Rudy
(2000) for a detailed discussion of the differential performance on
these tasks.

To summarize, this work showed that it is essential to go beyond
a simple conjunctive story and include a more complete set of
principles in understanding hippocampal and cortical function.
Because this more complete set of principles, implemented in an
explicit computational model, accounts for the empirical data,
these data provide support for these principles.

Rapid Incidental Conjunctive Learning Tasks

A consideration of the full set of principles suggests that another
class of tasks might provide a much better measure of hippocampal
learning compared to the nonlinear discrimination problems sug-
gested by Sutherland and Rudy (1989). As we just saw, the very fact
that nonlinear discrimination problems require conjunctive represen-
tations is what drives the cortex alone to be able to solve them via
error-driven learning. Therefore, we suggest that incidental conjunc-
tive learning tasks, where conjunctive representations are not forced by
specific task demands, may provide a much better index of hippocam-
pal function (O’Reilly and Rudy, 2000). Furthermore, the task should
only allow for a relatively brief period of learning, which will empha-
size the rapid learning of the hippocampus as compared to the slow
learning of the cortex. Thus, we characterize these tasks as rapid, inci-
dental conjunctive learning tasks.

There are several recent studies of tasks that fit the rapid, inci-
dental conjunctive characterizations. In these tasks, subjects are
exposed to a set of features in a particular configuration, and then
the features are rearranged. Subjects are then tested to determine if
they can detect the rearrangement. If the test indicates that the
rearrangement was detected, then one can infer that the subject
learned a conjunctive representation of the original configuration.
The literature indicates that the incidental learning of stimulus
conjunctions, unlike many nonlinear discrimination problems, is
dependent on the hippocampus.

Perhaps the simplest demonstration comes from the study of the
role of the hippocampal formation in exploratory behavior. Con-
trol rats and rats with damage to the dorsal hippocampus were
repeatedly exposed to a set of objects that were arranged on a
circular platform in a fixed configuration relative to a large and

FIGURE 5. Results for the negative patterning (left) and ambig-
uous feature (AC1, B1, AB2, C2; right) problems. Top row shows
data from rats from Alvarado and Rudy (1995), and the bottom row
shows data from the model. Intact is intact rats/networks, and HL is
rats/networks with hippocampal lesions. N 5 40 different random
initializations for the model. The hippocampally lesioned system is
able to learn the problems, and all conditions require many trials (i.e,
large number of errors). Negative patterning is differentially impaired
with a hippocampal lesion. Data from O’Reilly and Rudy (2000).

FIGURE 4. The model of O’Reilly and Rudy (2000), showing
both cortical and hippocampal components. The cortex has 12 differ-
ent input dimensions (sensory pathways), with 4 different values per
dimension. These are represented separately in the elemental cortex
(Elem). The higher level association cortex (Assoc) can form conjunc-
tive representations of these elements, if demanded by the task. The
interface to the hippocampus is via the entorhinal cortex, which con-
tains a one-to-one mapping of the elemental, association, and output
cortical representations. The hippocampus can reinstate a pattern of
activity over the cortex via the EC.
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distinct visual cue (Save et al., 1992). After the exploratory behav-
ior of both sets of rats had habituated, the same objects were rear-
ranged into a different configuration. This rearrangement rein-
stated exploratory behavior in the control rats but not in the rats
with damage to the hippocampus. In a third phase of the study, a
new object was introduced into the mix. This manipulation rein-
stated exploratory behavior in both sets of rats. This pattern of data
suggests that both control rats and rats with damage to the hip-
pocampus encode representations of the individual objects and can
discriminate them from novel objects. However, only the control
rats encoded the conjunctions necessary to represent the spatial
arrangement of the objects, even though this was not in any way a
requirement of the task. Several other studies of this general form
have found similar results in rats (Honey et al., 1990, 1998; Honey
and Good, 1993; Good and Bannerman, 1997; Hall and Honey,
1990). In humans, the well-established incidental context effects
on memory (e.g., Godden and Baddeley, 1975) have been shown
to be hippocampal-dependent (Mayes et al., 1992). Other hip-
pocampal incidental conjunctive learning effects have also been
demonstrated in humans (Chun and Phelps, 1999).

We have shown that the same neural network model con-
structed according to our principles and tested on nonlinear dis-
crimination learning problems as described above exhibits a clear
hippocampal sensitivity in these rapid incidental conjunctive
learning tasks (O’Reilly and Rudy, 2000).

Contextual Fear Conditioning

Evidence for the involvement of the hippocampal formation in the
incidental learning of stimulus conjunctions has also emerged in the
contextual fear conditioning literature. This evidence also provides a
simple example of the widely discussed role of the hippocampus in
spatial learning (e.g., O’Keefe and Nadel, 1978; McNaughton and
Nadel, 1990). Rats with damage to the hippocampal formation do not
express fear in a context or place where shock occurred, but will express
fear towards an explicit cue (e.g., a tone) paired with shock (Kim and
Fanselow, 1992; Phillips and LeDoux, 1994; but see Maren et al.,
1997). Rudy and O’Reilly (1999) provided specific evidence that, in
intact rats, the context representations are conjunctive in nature,
which has been widely assumed (e.g., Fanselow, 1990; Kiernan and
Westbrook, 1993; Rudy and Sutherland, 1994). For example, we
compared the effects of preexposure to the conditioning context with
the effects of preexposure to the separate features that made up the
context. Only preexposure to the intact context facilitated contextual
fear conditioning, suggesting that conjunctive representations across
context features were necessary. We also showed that pattern comple-
tion of hippocampal conjunctive representations can lead to general-
ized fear conditioning.

We have simulated the incidental learning of conjunctive con-
text representations in fear conditioning, using the same principles
as described above (O’Reilly and Rudy, 2000). For example, Fig-
ure 6 shows the rat and model data for the separate vs. intact
context features experiment from Rudy and O’Reilly (1999), with
the model providing a specific prediction regarding the effects of
hippocampal lesions, which has yet to be tested empirically.

Transitivity and Flexibility

Whereas the previous examples concerned the learning of con-
junctive representations, this next example is concerned with the
flexible use of learned information. Several theorists have described
memories encoded by the hippocampus as being flexible, meaning
that 1) such memories can be applied inferentially in novel situa-
tions (Eichenbaum, 1992; O’Keefe and Nadel, 1978), or 2) they
are available to multiple response systems (Squire, 1992). Al-
though the term flexibility provides a useful description of certain
behaviors, it does not provide a mechanistic understanding of how
this flexibility arises from the properties of the hippocampus.

We have shown that hippocampal pattern completion plays an
important role in producing this flexible behavior (O’Reilly and
Rudy, 2000). Specifically, we showed that the transitivity studies of
Bunsey and Eichenbaum (1996) and Dusek and Eichenbaum
(1997) can be simulated using the same model as in all of the
previous examples, with pattern completion playing a key role.
Interestingly, the model shows that the training parameters em-
ployed in these studies interact significantly with the pattern com-
pletion mechanism to produce the observed transitivity effects. We
are able to make a number of novel empirical predictions that are

FIGURE 6. Effects of exposure to the features separately, com-
pared to exposure to the entire context on level of fear response in (a)
rats (data from Rudy and O’Reilly, 1999) and (b) the model. The
immediate shock condition (Immed) is included as a control condi-
tion for the model. Intact rats and the intact model show a significant
effect of being exposed to the entire context together, compared to the
features separately, while the hippocampally lesioned model exhibits
slightly more responding in the separate condition, possibly because
of the greater overall number of training trials in this case. Simulation
data from O’Reilly and Rudy (2000).
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inconsistent with a simple logical-reasoning mechanism by manip-
ulating these factors (O’Reilly and Rudy, 2000).

Dual-Process Memory Models

The dual mechanisms of the neocortex and hippocampus pro-
vide a natural fit with dual-process models of recognition memory
(Jacoby et al., 1997; Aggleton and Shaw, 1996; Aggleton and
Brown, 1999; Vargha-Khadem et al., 1997; Holdstock et al.,
2000; O’Reilly et al., 1998). These models hold that recognition
can be subserved by two different processes, a recollection process
and a familiarity process. Recollection involves the recall of specific
episodic details about the item, and thus fits well with the hip-
pocampal principles developed here. Indeed, we have simulated
distinctive aspects of recollection using essentially the same model
(O’Reilly et al., 1998). Familiarity is a nonspecific sense that the
item has been seen recently: we argue that this can be subserved by
the small weight changes produced by slow cortical learning. Cur-
rent simulation work has shown that a simple cortical model can
account for a number of distinctive properties of the familiarity
signal (Norman et al., 2000).

One specific and somewhat counterintuitive prediction of our
principles has recently been confirmed empirically in experiments
on a patient with selective hippocampal damage (Holdstock et al.,
2000). This patient showed intact recognition memory for studied
items compared to similar lures when tested in a two-alternative
forced-choice procedure (2AFC), but was significantly impaired
relative to controls for the same kinds of stimuli using a single item
yes-no (YN) procedure. We argue that because the cortex uses
overlapping distributed representations, the strong similarity of the
lures to the studied items produces a strong familiarity signal for
these lures (as a function of this overlap). When tested in a YN
procedure, this strong familiarity of the lures produces a large
number of false alarms, as was observed in the patient. However,
because the studied item has a small but reliably stronger familiar-
ity signal than the similar lure, this strength difference can be
detected in the 2AFC version, resulting in normal recognition
performance in this condition. The normal controls, in contrast,
have an intact hippocampus which performs pattern separation
and is able to distinguish the studied items and similar lures, re-
gardless of the testing format.

Retrograde Amnesia

Several lines of empirical evidence suggest that there is a retrograde
gradient for memory loss as a function of hippocampal damage, with
the most recent memories being the most severely affected, while older
memories are relatively intact (e.g., Squire, 1992; Winocur, 1990;
Kim and Fanselow, 1992; Zola-Morgan and Squire, 1990). Theoret-
ically, this phenomenon can be understood in terms of the cortex
gradually acquiring hippocampal information (e.g., McClelland et al.,
1995; Alvarez and Squire, 1994). However, this account has been
called into question recently, both from failures to replicate the retro-
grade findings (Sutherland et al., 2000), and reinterpretations of the
existing findings in ways that do not require that the cortex acquires
information from the hippocampus (e.g., the “multiple hippocampal
trace” theory of Nadel and Moscovitch, 1997).

Our computational principles suggest that to the extent there
are opportunities for the hippocampus to reactivate cortical pat-
terns of activity, the consequent cortical learning will necessarily
produce a consolidation-like effect. We were able to fit a number of
different retrograde amnesia gradients using these principles (Mc-
Clelland et al., 1995).

COMPARISON WITH OTHER APPROACHES

A number of other approaches to understanding cortical and
hippocampal function share important similarities with our ap-
proach, including, for example, the use of Hebbian learning and
pattern separation (e.g., Hasselmo and Wyble, 1997; McNaugh-
ton and Nadel, 1990; Touretzky and Redish, 1996; Burgess and
O’Keefe, 1996; Wu et al., 1996; Treves and Rolls, 1994; Moll and
Miikkulainen, 1997; Alvarez and Squire, 1994). These other ap-
proaches all offer other important principles, many of which would
be complementary to those discussed here, so that it would be
possible to add them to a larger, more complete model.

Perhaps the largest area of disagreement is in terms of the relative in-
dependence of the cortical learning mechanisms from the hippocam-
pus. There are several computationally explicit models proposing that
the neocortex is incapable of powerful learning without the help of the
hippocampus (Gluck and Myers, 1993; Schmajuk and DiCarlo,
1992; Rolls, 1990), and other more general theoretical views that
express a similar notion of limited cortical learning with hippocampal
damage (Glisky et al., 1986; Squire, 1992; Cohen and Eichenbaum,
1993; Wickelgren, 1979; Sutherland and Rudy, 1989). In contrast,
our principles hold that the cortex alone is a highly capable learning
system, that can for example learn complex conjunctive representa-
tions in the service of nonlinear discrimination learning problems.

Empirically, the data that appear to support the limited cortical
learning view tend to be based on larger lesions of the medial temporal
lobe. With the advent of selective lesion techniques in rats and mon-
keys, and the study of people with highly selective hippocampal le-
sions, it is becoming clear that the cortex is capable of quite substantial
learning on its own. Perhaps the most dramatic evidence comes from
a group of human amnesics who suffered bilateral selective hippocam-
pal damage at relatively young ages (Vargha-Khadem et al., 1997).
Despite having significantly impaired hippocampal function (as was
supported by brain scans and very poor performance on recall tests),
these individuals had acquired normal or nearly normal levels of cog-
nitive functioning in language and semantic knowledge, and had nor-
mal or nearly normal IQs. Although it is difficult to completely rule
out the idea that this preserved semantic learning is the result of resid-
ual hippocampal functioning (as advocated by Squire and Zola,
1998), this seems somewhat implausible in the face of the patients’
significant recall impairments and the brain scan evidence.

One important conclusion from this line of reasoning is that the
cortical regions surrounding the hippocampus in the medial tem-
poral lobes are particularly important for many kinds of learning
and memory. We suggest that this is because of a significant con-
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vergence of other cortical association areas in these regions
(O’Reilly and Rudy, 2000; Mishkin et al., 1997, 1998).

CONCLUSIONS

We have shown that a small set of computationally motivated prin-
ciples can account for a wide range of empirical findings regarding the
differential properties of the neocortex and hippocampus in learning
and memory. In addition, these principles make a large number of
empirical predictions that will be tested in future research.
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