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Computational models in cognitive neuroscience should ideally use bi-
ological properties and powerful computational principles to produce
behavior consistent with psychological �ndings. Error-driven backprop-
agation is computationally powerful and has proven useful for modeling
a range of psychological data but is not biologically plausible. Several
approaches to implementing backpropagation in a biologically plausible
fashion converge on the idea of using bidirectional activation propagation
in interactive networks to convey error signals. This article demonstrates
two main points about these error-driven interactive networks: (1) they
generalize poorly due to attractor dynamics that interfere with the net-
work’s ability to produce novel combinatorial representations systemat-
ically in response to novel inputs, and (2) this generalization problem
can be remedied by adding two widely used mechanistic principles, in-
hibitory competition and Hebbian learning, that can be independently
motivated for a variety of biological, psychological, and computational
reasons. Simulations using the Leabra algorithm, which combines the
generalized recirculation (GeneRec), biologically plausible, error-driven
learning algorithm with inhibitory competition and Hebbian learning,
show that these mechanisms can result in good generalization in interac-
tive networks. These results support the general conclusion that cognitive
neuroscience models that incorporate the core mechanistic principles of
interactivity, inhibitory competition, and error-driven and Hebbian learn-
ing satisfy a wider range of biological, psychological, and computational
constraints than models employing a subset of these principles.

1 Introduction

A long-standing goal of neural network modeling is to develop a formal-
ism that is consistent with the known biological properties of the neural
networks of the brain, uses powerful computational principles, and pro-
duces behavior consistent with �ndings from psychology. This goal has
often been thwarted by incompatibilities among these different levels of
constraints. This article examines the ability of networks to process novel in-
formation, termed generalization, and how this ability is affected by network
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properties motivated by attempts to produce a formalism that achieves this
long-standinggoal. Wewill see that interactive (bidirectional, recurrent) net-
works, which are appealing for a variety of biological, psychological, and
computational reasons, nevertheless tend to generalize much worse than
their feedforward counterparts. However, the inclusion of two other prin-
cipled mechanisms, inhibitory competition and Hebbian learning (which
are similarly appealing for a variety of biological, psychological, and com-
putational reasons), results in good generalization in an interactive net-
work. These results support the use of formalisms that include all of these
principles.

1.1 The Importance of Interactivity. Interactive networks provide a
number of advantages from the biological, computational, and psycholog-
ical perspectives. Biologically, bidirectional connectivity is ubiquitous in
the cortex (Felleman & Van Essen, 1991; Levitt, Lewis, Yoshioka, & Lund,
1993; White, 1989; Douglas & Martin, 1990). Computationally, interactivity
enables iterative, constraint-satisfaction-style processing (Smolensky, 1986;
Ackley, Hinton, & Sejnowski, 1985; Hop�eld, 1982, 1984), and generally al-
lows information processing to �ow in many different directions within
one network, providing a richer and more �exible system. Psychologically,
interactivity is important for understanding phenomena like the word su-
periority effect, where higher-level word representations both depend on
and yet exert top-down in�uence over lower-level letter representations
(McClelland & Rumelhart, 1981) and other kinds of top-down processing
effects (Vecera & O’Reilly, 1998).

Another major motivation for interactive networks is that they enable
a more biologically plausible form of error-driven backpropagation learn-
ing. Backpropagation learning (Rumelhart, Hinton, & Williams, 1986) pro-
vides the starting point for the algorithms discussed in this article and has
been used in a wide range of psychological models, but is unfortunately
inconsistent with known biological properties (Crick, 1989;Zipser & Ander-
sen, 1988). Speci�cally, a literal biological interpretation of backpropagation
would require that an error derivative term be (1) propagated backward
across the synapse and down the axon of the sending neuron, (2) summed
and multiplied by a derivative term, and (3) propagated down the den-
drites of this neuron and across its synapses, and so on. No evidence for
these mechanisms exists.

It was recently shown that backpropagation can be implemented in a
more biologically plausible fashion using bidirectional activation propa-
gation in an interactive network using the GeneRec algorithm (O’Reilly,
1996a), which is a generalization of the recirculation algorithm (Hinton &
McClelland, 1988). In GeneRec, error information is propagated as two sep-
arate terms by standard activation propagation mechanisms in interactive
networks, and the difference between these terms (which is the error signal)
can be plausibly computed using the synaptic modi�cation mechanisms un-
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derlying long-term potentiation and depression (LTP/LTD). Versions of the
GeneRec algorithm are equivalent to the other known ways of implement-
ing powerful error-driven learning using interactive activation propagation
instead of direct error propagation (e.g., the deterministic Boltzmann ma-
chine, Hinton, 1989b; and contrastive Hebbian learning, Movellan, 1990).
Thus, several different approaches converge on the idea that the way to
perform error-driven learning in a more biologically plausible manner is
to use interactive networks, where error signals are communicated by top-
down activation propagation.

1.2 Interactivity Impairs Generalization. Despite thenumerous advan-
tages of interactivity, it can also impart some signi�cant limitations: it tends
to impair the generalization performance of networks. Generalization is
important from both computational and psychological perspectives. Com-
putationally, generalization has been a major focus in the study of machine
learning, where it enables limited training data to be applied more broadly
(Weigend, Rumelhart, & Huberman, 1991; Wolpert, 1992; Vapnick & Cher-
vonenkis, 1971). Psychologically, generalization is important for modeling
human nonword reading performance (e.g., the fact that people generally
pronounce nonwords like nust according to the regularities of the English
language;Seidenberg & McClelland, 1989;Plaut, McClelland, Seidenberg, &
Patterson, 1996), and more generally for understanding how human and an-
imal cognition can exhibit �exibility in ever-changing environments. Thus,
the fact that interactivity impairs generalization, often to a signi�cant de-
gree, is problematic for any attempt to develop a biologically, computation-
ally, and psychologically satisfying neural network algorithm.

To understand how an interactive network can interfere with generaliza-
tion, one must understand how networks typically generalize. Networks
can form distributed internal representations that encode the compositional
features of the environment in a combinatorial fashion, which enables novel
stimuli to be processed successfully by activating the appropriate novel
combination of representational (hidden) units. Although the combination
is novel, the constituent features are familiar and have been trained to pro-
duce or in�uence appropriate outputs, such that the novel combination of
features should also produce a reasonable result. In the domain of reading,
a network can pronounce nonwords correctly when it represents the pro-
nunciation consequences of each letter using different units that can easily
be recombined in novel ways for nonwords.

In this combinatorial view of generalization, interactivity impairs gen-
eralization because an interactive network is a dynamic system, whereas
a feedforward network is not. Under certain conditions, the interactive ac-
tivation dynamics (e.g., attractors) can interfere with the ability to form
novel combinatorial representations; the units interact with each other too
much to retain the kind of independence necessary for novel recombina-
tion. Consider a very simple example (see Figure 1): train that a red and
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Figure 1: Illustration of why independent (elemental) internal representations
are important for good combinatorial generalization . Inputs are different col-
ored lights (red, green, and blue), and outputs are different buttons that could
be pressed. Training consists of R,G ! 1,2 and R,B ! 1,3, and testing is on
G,B, which, combinatorially, should produce 2,3. (a) the internal representations
encode the input-output mapping in an independent or elemental fashion, en-
abling full combinatorial generalization . (b) the representations are conjunctive,
meaning that inputs interact or conjoin in determining the internal represen-
tations (via attractor dynamics), producing different attractors for each pair of
inputs. This can produce bad combinatorial generalization because the weights
for the novel G,B attractor have not been associated with anything meaningful
during training.

green light means push buttons 1 and 2, and a red and blue light means
push buttons 1 and 3. Then test with green and blue lights—buttons 2 and
3 should be pushed. If the training is encoded using independent internal
representations for each elemental input-output mapping, then the system
will naturally generalize to novel combinations (see Figure 1a). However, if
there are interactive attractor dynamics that cause different pairs of inputs
to be encoded by very different sets of internal units, then combinatorial
generalization will not work, because the green-blue test input will activate
a novel internal representation that has not been systematically associated
with the correct outputs (see Figure 1b).

In other words, combinatorial generalization suffers to the extent that
inputs interact conjunctively in determining the internal representation.
The trade-off between independent, elemental representations versus con-
junctive or con�gural representations has been analyzed in the context of
hippocampal representations, which are thought to be conjunctive, while
cortical representations are thought to be more elemental or independent
(Marr,1971; O’Reilly & McClelland, 1994; McClelland, McNaughton, &
O’Reilly, 1995; O’Reilly & Rudy, 2000, in press). According to this analysis,
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conjunctive representations are important for capturing speci�cs, while ele-
mental and independent representations are important for capturing gener-
alities of the environment and using these representations for generalization
to novel situations.

Thus, as will be demonstrated, generalization suffers when there are
conjunctive attractor dynamics, where multiple input features interact and
give rise to different internal representations, instead of each feature con-
tributing independently (combinatorially) to the internal representations.
Speci�cally, these conjunctive attractor dynamics can arise when learning
and activation dynamics are underconstrained, such that individual units
tend to be activated by a large and unsystematic collection of input features,
and the network is highly sensitive to small differences between different
inputs. In addition to demonstrating a substantial impairment of combina-
torial generalization in underconstrained interactive networks, the simula-
tions in this article provide more direct evidence that conjunctive attractor
dynamics are the source of the problem.

However, some other reports in the literature have demonstrated suc-
cessful generalization in interactive networks (e.g., Plaut, & McClelland,
1993; Plaut et al., 1996). Indeed, Plaut and colleagues attributed the gen-
eralization success of their networks to their ability to form componential
attractors, where attractor dynamics operated within, but not between, the
representations of the compositional features of letters and phonemes of
words (just like the independent representations of Figure 1a). Thus, the
components could be effectively recombined to subserve good generaliza-
tion, instead of suffering from the problems of conjunctive representations.
However, the algorithm that Plaut and colleagues used did not signi�cantly
develop the recurrent feedback weights from the output layer to the hidden
layer over the course of learning (Plaut, personal communication, 1996),
and the networks were speci�cally constrained to settle very rapidly. These
facts minimize the extent to which those networks can be considered in-
teractive; instead, they are effectively feedforward networks that have only
token feedback connections, and their generalization performance can thus
be attributed to the lack of interactivity rather than to the existence of com-
ponential attractors.

Another case showed that recurrent connections actually improved gen-
eralization (Harm & Seidenberg, 1999), but here the attractor dynamics were
only in the output layer and served to clean up representations to the nearest
valid output. The arguments in this article apply instead to fully interac-
tive networks where the input-output mapping itself is mediated by an
interactive network via one or more hidden layers. The importance of the
distinction between output-only attractors and those developed over hid-
den layers was clearly demonstrated by Noelle and Cottrell (1996), who
found that networks with only local recurrent connectivity at the directly
trained output layer generalized well, but networks with recurrent connec-
tivity at the hidden layer that received a distal error signal from an output
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layer generalized poorly. More recent work by Noelle and Zimdars (1999)
showed improved generalization with distal error signals by incorporating
additional biasing mechanisms.

Thus, the idea that generalization performance is impaired in fully in-
teractive networks is consistent with the �ndings in the literature, as well
as the simulations reported below. Therefore, the improvement in biologi-
cal plausibility imparted by the GeneRec algorithm and variations of it is
offset by a decrement in psychological plausibility and computational ef-
�cacy, leaving us perhaps not that much closer to the eventual goal of a
biologically, psychologically, and computationally satisfying algorithm.

1.3 Biases for Improving Generalization in Interactive Networks. A
very different conclusion can be reached if one retains the advantages of
interactive networks and augments them with additional biases that favor
the development of systematic, truly componential attractor structures. The
use of such biases in neural networks has been discussed in the context of
the fundamental bias-variance trade-off (Geman, Bienenstock, & Doursat,
1992). This trade-off emphasizes the fact that biases that are appropriate for
the task can greatly facilitate learning and generalization by reducing the
level of variance, where variance re�ects the extent to which parameters
are underconstrained by learning, and thus free to vary, causing random
errors in generalization. These biases are also known as regularizers (e.g.,
Poggio & Girosi, 1990). However, inappropriate biases can obviously hurt
performance by introducing systematic errors, such that there is no such
thing as a single universallybene�cial set of biases (Wolpert, 1996a, 1996b). It
is nevertheless possible that mammalian cortical learning mechanisms have
a set of biases that facilitate learning and generalization in the small subset
of all possible environments that characterize the natural world (and what
an animal needs to learn about the natural world to survive). An important
goal of the work described here is to make progress in identifying such
biases.

It iswell known that purelyerror-driven learningmechanisms areweakly
biased and are therefore typically underconstrained by the learning task,
causing them to suffer from too much variance (Vapnick & Chervonenkis,
1971; Weigend et al., 1991; Geman et al., 1992; Wolpert, 1992). For example,
this means that the weights in a trained network tend to re�ect a large con-
tribution from their random initial values, which prevents the units from
systematically carving up the input-output mapping into separable subsets
that can be independently combined for the novel testing items. Instead,
each unit participates haphazardly in many different aspects of the map-
ping. This haphazardness is often not that detrimental to generalization
in a purely feedforward network (e.g., as demonstrated in a componential
generalization task; Brousse, 1993), but it proves far more damaging in the
context of the attractor dynamics in an interactive network.

Therefore, it seems likely that appropriate additional biases could signi�-
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cantly increase the network’s tendency to produce componential attractors.
The speci�c choices of biases explored in this article are biologically and psy-
chologically motivated, with the hope of producing an algorithm that is at
once biologically plausible and capable of effective generalization. Specif-
ically, two important principled mechanisms, inhibitory competition and
Hebbian learning, are incorporated as biases in the network. Both of these
mechanisms have been widely used for biological and psychological mod-
els, but they have not generally been combined with error-driven learning
in an interactive network. Biologically, there is good evidence for inhibitory
competition in the cortex in the form of the effects of pervasive inhibitory
interneurons (Gabbot & Somogyi, 1986), and Hebbian learning character-
izes the properties of LTP/LTD in the cortex (Bear, 1996). Psychologically,
inhibition is important for modeling attentional and other phenomena, and
Hebbian learning has been used in modeling a number of different learning
phenomena (Miller, Keller, & Stryker, 1989).

In the context of generalization in interactive networks, the speci�c biases
of inhibitory competition and Hebbian learning constrain both the interac-
tive activation dynamics (in the case of inhibitory competition) and the
learned weight patterns such that the network actually produces compo-
nential attractors.

The simulations presented in this article, which are implemented us-
ing the Leabra algorithm that combines GeneRec with inhibitory competi-
tion and Hebbian learning mechanisms (O’Reilly, 1996b, 1998; O’Reilly, &
Munakata, 2000; O’Reilly & Rudy, in press), demonstrate that these biases
outperform other standard biases such as weight decay on a combinato-
rial generalization task. Furthermore, these biases have proven useful for a
wide range of naturalistic learning environments, as demonstrated by mod-
eling a range of cognitive phenomena in perception, memory, language, and
higher-level cognition using the same algorithm, often with the same pa-
rameters (O’Reilly& Munakata, 2000).Thus, by incorporating the additional
mechanistic principles of inhibitory competition and Hebbian learning to-
gether with interactivity in a biologically plausible form of backpropagation
via the GeneRec algorithm, it is possible to have a neural network model
that satis�es a wider range of biological, psychological, and computational
constraints than models using only subsets of these principles.

The article is organized as follows. First, a combinatorial generalization
task is introduced, and feedforward backpropagation and GeneRec are com-
pared, demonstrating the generalization problem with interactivenetworks.
Corroborating evidence from recurrent backpropagation is then presented.
Then inhibitory competition and Hebbian learning are discussed and the
Leabra implementation summarized. Then generalization results for Leabra
are presented, with a variety of analyses of its performance, followed by an
exploration of a version of the combinatorial generalization task with ex-
ceptions and an entirely different generalization task involving handwritten
digit recognition.



1206 Randall C. O’Reilly

2 Combinatorial Generalization and Interactivity

The task used to explore combinatorial generalization was constructed with
several different desiderata in mind. First, it has a simple combinatorial
structure, such that novel inputs can be composed from combinations of a
basic vocabulary of features. This combinatorial structure is implemented
by having four different input-output slots, where the output mapping for
a given slot depends only on the corresponding input pattern for that slot
(similar to the tasks studied by Brousse, 1993, and Noelle & Cottrell, 1996,
and the example shown in Figure 1). One could think of this as the letters in
a word mapping to corresponding phonemes, except that unlike English,
this mapping is completely regular (a combination of regular and irregular
cases is explored later). Each slot has a vocabulary of input-output map-
pings. The second desiderata is that there is some interesting substructure
to the vocabulary mapping within each slot, which establishes that a slot is
a coherent, interdependent collection of units. Speci�cally, the input vocab-
ulary consists of all 45 combinations of 5 horizontal and 5 vertical bars in
a 5 £ 5 grid, and the output mapping is a localist identi�cation of the two
input bars (this is similar to the bars tasks used by Földi Âak, 1990; Saund,
1995; Zemel, 1993; Dayan & Zemel, 1995). The third desiderata is that the
structure of the task should be visibly evident in the weight patterns, which
is accomplished by the use of the bars, so that it should be easy to examine
the trained weight patterns for evidence of having represented the basic
elements of the task. The resulting network with an example input-output
pattern is shown in Figure 2.

The total possible number of distinct input patterns is approximately 4.1
million(454), but the networks are trained on only 100 randomly constructed
examples. Thus, to the extent that any signi�cant level of generalization is
observed, this task serves as a demonstration of how neural networks can
leverage a relatively small amount of experience to produce a huge range of
generalized behavior. Five hundred randomly constructed testing patterns
(all different from the 100 training patterns) were used to assess generaliza-
tion performance, with generalization reported as a proportion of testing
items with errors. Error was scored using the criterion that each output unit
had to be on the right side of .5 according to the correct target pattern (i.e.,
using a unit-wise tolerance of .5). Ten different randomly initialized net-
works were run for 500 epochs each, and the results are averages over the
best generalization performance (assessed every 25 epochs during training)
of these 10 networks.

2.1 Basic Results. To assess the effect of interactivity, two different net-
works were compared on the combinatorial generalization task: a standard
feedforward backpropagation networkand an interactive GeneRec network
using the symmetric, midpoint variation of the learning rule, which is equiv-
alent to contrastive Hebbian learning (CHL) or a deterministic Boltzmann
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Figure 2: Architecture of the combinatorial generalization network. The input
and output are composed of four slots, with the input pattern for each slot being
one of 45 different possible combinations of two horizontal and/or vertical bars
in the 5 £5 slot grid, and the output pattern being a localist identi�cation of each
of the two lines (the �rst row of �ve output units for each slot representing the
vertical lines and the second row representing the horizontal lines). Darkened
units show an example input-output pattern.

machine (DBM):

Dwij D 2 [(xC
i yC

j ) ¡ (x¡
i y¡

j )] (2.1)

for sending andreceivingunit activations xi and yj, respectively, in theminus
(target unclamped) and plus (target clamped) phases (see O’Reilly, 1996a,
for details). A learning rate (2 ) of .01 was used for both, without any mo-
mentum or other factors. The basic generalization results for networks with
100 hidden units are shown in Figure 3, which clearly shows that the in-
teractivity of GeneRec impairs generalization considerably. The interactive
GeneRec network makes roughly 90% errors, while the backpropagation
network makes only 40% errors.

2.2 Hidden Layer Size. It is generally thought that fewer degrees of
freedom should produce more constrained learning and thus better gen-
eralization. The results for different numbers of hidden units, shown in
Figure 4, indicate that in this task, more hidden units produce better gener-
alization, with the 100 hidden-unit case (shown in Figure 3) producing the
best performance (and larger numbers of hidden units produce somewhat
better performance but with decreasing gains). This result goes against the
standard idea that more hidden units results in over�tting, but over�tting
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Figure 3: Generalization results (proportion error on the test set) comparing
standard feedforward backpropagation (Bp) with interactive GeneRec. GeneRec
generalizes very poorly.
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Figure 4: Effect of number of hidden units on generalization performance in
(a) standard feedforward backpropagation (Bp) and (b) interactive GeneRec.
Larger hidden layers perform better.

may not be as much of a problem here because the task is not noisy; the
input-output mapping is completely deterministic. A likely explanation is
that more hidden units allow for greater averaging over multiple partially
redundant but idiosyncratic hidden units, producing more systematic over-
all behavior. Similar results were reported by Weigend (1994) and in the ver-
sion of this task with exceptions discussed later. However, the handwritten
digit recognition task has noisy input patterns, and evidence of over�tting
with larger hidden layers is observed.

2.3 Weight Decay. A commonly used bias or regularizing function is
weight decay (Hinton, 1989a; Weigend et al., 1991). We implemented two
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Figure 5: Effect of weight decay on generalization performance in (a) standard
feedforward backpropagation (Bp) and (b) interactive GeneRec. First bar is 0
weight decay. Bars labeled S are for the given level of simple weight decay,
while E bars are for the given level of weight-elimination weight decay. Simple
weight decay at the .002 level produces the best results.

commonly used forms of weight decay in the Bp and GeneRec networks:
simple weight decay and weight-elimination weight decay (Weigend et al.,
1991). In simple weight decay, a constant fraction of the weight value is sub-
tracted at each weight update, and weight elimination is similar except that
the rate of decay is a more complex function of the weight such that larger
weights suffer relatively less decay than smaller ones (supporting a prior
assumption of a bimodal distribution of weight values—one population of
larger weights that are actually useful and another of near-zero weights that
are not useful; see Weigend et al., 1991, for details).

The results with these forms of weight decay for the 100-hidden-unit
network are shown in Figure 5. Although a small amount (.002; smaller
amounts had progressively smaller effects) of simple weight decay appears
to improve generalization performance in both Bp and GeneRec reliably, the
difference is not substantial . The weight-elimination version of weight de-
cay always appears to impair, rather than improve, performance. Although
the speci�c forms of weight decay explored here were not overly successful
in this task, it is possible that other forms might perform better. Never-
theless, most forms of weight decay are problematic from a psychological
perspective because they predict a level of forgetting that is likely much
stronger than what is observed in humans and animals, given the weight
decay levels that produce computational bene�ts.

2.4 Weight Patterns. An examination of the weights in the trained net-
works clearly shows why generalization is impaired in the interactive net-
work (see Figure 6). The units have not carved the input-output mapping
into separable subsets that can be independently combined for the novel
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Figure 6: Weights for a typical hidden unit in the GeneRec network after train-
ing, with the size of the square indicating magnitude and color indicating sign
(white D positive, black D negative). Both feedforward weights from the in-
put layer and feedback weights from the output layer are shown (the GeneRec
weights are symmetric so these feedback weights also indicate the nature of the
hidden-to-output weights; also note that there are no within-layer connections,
as indicated by the zero-value gray squares). It is clear that the units are not
dividing up the task into separable mappings for each slot; instead, each unit
participates in multiple slot mappings.

testing items; instead, each unit participates in the input-output mapping
for multiple slots. Although this is true for both the backpropagation and
GeneRec networks, it is particularly damaging for the interactive GeneRec
networkbecauseof its attractor dynamics. In contrast, the feedforward back-
propagation network is still capable of producing a roughly linear combi-
nation of hidden unit activations that yields reasonable (though far from
perfect) levels of generalization.

2.5 Combinatorial Response Analysis: Direct Evidence for Conjunc-
tive Attractor Dynamics. One way of more directly assessing the extent
of conjunctive attractor dynamics in the interactive network is to measure
its internal hidden representations in response to input patterns that differ
systematically from each other by changes in one or more of the input slots.
Because there is no relationship between the slots, the hidden layer should
exhibit a combinatorial response as a function of the number of slots that
are different. This is what would happen if the representations for each slot
were independent of each other (as in Figure 1a). If, however, we see that the
hidden layer representations are more different than the input patterns (i.e.,
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exhibiting pattern separation; O’Reilly & McClelland, 1994), this suggests
that conjunctive activation dynamics are causing the network to overreact
to differences in the input. In other words, the hidden units are encoding
speci�c conjunctions of input features across different slots, and therefore
very different hidden representations are activated when the input changes
(as in Figure 1b).

In short, if we �nd that the hidden representations in the interactive
network are more different than the corresponding differences in input pat-
terns, then this supports the idea that conjunctive attractor dynamics are
behind the poor generalization observed in these networks.

To address this important question, two sets of 250 input pattern pairs
were generated—one set that differed in only one slot (pairs overlapped
by 75%) or by two slots (pairs overlapped by 50%). Thus, to the extent
the average pairwise hidden unit overlap falls below 75% and 50% for the
�rst and second sets, respectively, the hidden patterns are exhibiting con-
junctivity. We presented these patterns to the Bp and GeneRec networks
and computed the normalized dot product (cosine) of the corresponding
hidden representations (after settling in GeneRec) for each set of pairs. To
control for the baseline activation levels of the units, which would other-
wise distort the similarity measure, the average activation values over all the
test input patterns were subtracted from the pattern-wise activation values
before computing the cosine.

Figure 7 shows the results of this analysis, where it is clear that the interac-
tive GeneRec network is representing the input patterns using consistently
more different hidden representations than the feedforward network. It is
particularly instructive that the random initial networks exhibit a much
more proportional response, as would be expected when the weights are
small and the units are in the linear range of the sigmoidal activation func-
tion. However, when the GeneRec network’s weights get larger, it exhibits
a much more nonlinear response, indicative of the complex, conjunctive
attractors that have developed over training.

To substantiate further that the conjunctive attractors formed in the
GeneRec network are really spurious conjunctions across different slots and
not the result of simply activating a trained attractor that was close to the
novel input pattern, the output patterns need to be analyzed. If the GeneRec
network is indeed producing spurious conjunctive attractors, one would ex-
pect that the outputs would be largely uninterpretable noise (e.g., based on
the random-looking weight patterns in Figure 6), and not well formed out-
puts that correspond to trained patterns. To test this, the output activation
patterns for each of the four output slots were compared to the entire vocab-
ulary of possible output patterns within each slot. The output was counted
as well formed if each of the slots matched (to within .5 unit-wise toler-
ance) one of these valid output patterns, and was considered malformed
otherwise. Note that this analysis ignores whether the actual combination
of patterns across slots was trained; it just treats each slot individually (i.e.,
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Figure 7: Average pairwise overlap (normalized dot product or cosine) between
hidden patterns corresponding to inputs that differ by (a) 75% (one out of four
slots different) and (b) 50% (2 out of 4 slots different). Feedforward backpropa-
gation (Bp) remains much closer to a linear response level (75% and 50% hidden
similarity, respectively) after training compared to interactive GeneRec, which
shows evidence of attractor dynamics pulling the network away from a linear,
combinatorial response to the inputs.

allowing any of the approximately 4.1 million possible patterns to match).
The number (out of 500 total patterns) of malformed outputs for the 75%
and 50% overlap testing patterns is shown in Figure 8. These results, show-
ing that 80% of the GeneRec outputs are malformed compared to only 40%
for backprop, clearly support the idea that the interactive attractor dynam-
ics and underconstrained weights in GeneRec lead to spurious, malformed
conjunctive attractors.

2.6 Summary. An interactive network that is otherwise identical to a
feedforward one generalizes much worse on this combinatorial generaliza-
tion task. Manipulations of hidden units and weight decay had qualitatively
similar effects on both types of networks, such that the interactive network
appears to behave just like the feedforward one, but with a greatly ele-
vated offset in generalization errors. This result, together with the analysis
of the hidden layer responses and well-formedness of the outputs, clearly
supports the idea that the spurious, conjunctive attractor dynamics of the
interactive network interfere with its ability to produce systematic combi-
natorial representations of novel stimuli.

3 Comparison with Recurrent Backpropagation

Although GeneRec has been shown to compute essentially the same error
gradients as backpropagation, even in networks with several hidden lay-
ers (O’Reilly, 1996a), one might argue that the bad generalization results
from GeneRec are somehow an artifact of this particular algorithm. To ad-
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Figure 8: Number of malformed outputs out of 500 total for the 75% and 50%
overlap inputs. An output is well-formed if each of the slot outputs corresponds
to one of the vocabulary of possible slot outputs, and malformed otherwise.
The results support the idea that conjunctive attractor dynamics and undercon-
strained weights cause GeneRec to produce spurious (malformed) outputs.

dress this concern and provide additional evidence for the idea that inter-
activity impairs generalization, networks using the Almeida-Pineda (AP)
�xed-point recurrent backpropagation algorithm (Almeida, 1987; Pineda,
1987a, 1987b, 1988) were also run. This algorithm is a mathematically di-
rect extension of feedforward error backpropagation to a recurrent attractor
network having the same basic architecture as the GeneRec network. To
the extent that this AP network also suffers from poor generalization, this
substantiates the GeneRec results and shows that they are not artifactual.

One important difference between AP and the CHL version of GeneRec
is that GeneRec maintains the weight symmetry between feedforward and
feedback weights, whereas AP does not. The net result is that GeneRec de-
velops the feedback weights over the course of learning, whereas AP leaves
them virtually untouched. Because it is the magnitude of these feedback
weights that largely determines the extent of the interactive activation dy-
namics in the network, this is an important difference. By adjusting the
random weight initialization in the AP network, we can control the average
magnitude of the feedback weights to achieve three objectives: (1) show that
these weights in�uence the level of generalization, such that the more inter-
active networks with stronger feedback weights generalize worse; (2) show
that GeneRec’s generalization is roughly what would be expected given
the magnitude of its feedback weights; and (3) show that the Plaut et al.
(1996) generalization results with a recurrent backpropagation network are
as expected from a recurrent network with small, undeveloped feedback
weights.
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Figure 9: Generalization results for Almeida-Pineda (AP) with various levels of
feedbackweightvariance (.25, .5, and 1.0), as compared with the Bp and GeneRec
results shown in Figure 3. As the strength of these feedback weights increases,
causing increased attractor dynamics, generalization performance decreases.
Figure 10shows that GeneRec’sgeneralization is commensurate with AP’sgiven
the strength of its feedback weights.

Figure 9 shows the generalization performance of three different AP
networks having .25, .5, and 1.0 uniform random initial weight variance
(centered on 0), resulting in an average feedback weight magnitude (mean
of absolute values of all output-to-hidden weights) of roughly .125, .25,
and .5, respectively. Clearly, generalization performance is a function of the
strength of these weights, with the 1.0 variance case resulting in general-
ization performance roughly equivalent to that of GeneRec, while the .25
variance case produces generalization performance roughly comparable to
that of the feedforward network, as was the case with the Plaut et al. (1996)
model.

Figure 10a compares the average feedback weight magnitudes from be-
fore and after training with those values from the GeneRec network. Com-
mensurate with their generalization performance, the GeneRec network
has slightly smaller feedback weights compared to the 1.0 variance AP net-
work. Thus, GeneRec’s generalization performance is as expected based on
its level of interactivity as determined by these feedback weights. The cor-
relation between the generalization scores and the trained feedback weight
magnitude measure was very strong (r D .9705). Also evident from Fig-
ure 10 is the fact that GeneRec develops the feedback weights over training
much more than AP does.

Another way of measuring the level of interactivity in a network is in
terms of settling time—the number of activation update cycles required to
achieve a stable activation state (stopping criterion was when maximum
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Figure 10: Measures of the level of interactivity in the AP and GeneRec net-
works: (a) average feedback weight magnitudes before and after training and
(b) settling times (average number of cycles to achieve a stable activation state).
These measures are strongly correlated (r D .9705 and r D .9998, respectively)
with the generalization performance shown in Figure 9, as well as with each
other (r D .9733). Also, GeneRec develops the feedback weights much more
than AP does.

activation change of any unit in the network in one cycle went below .01). A
longer settling time is indicative of a more complex activation trajectory and
thus of more extensive attractor dynamics. As shown in Figure 10b, settling
time is well correlated with both the strength of the feedback weights (r D
.9733) and the generalization performance (r D .9998). To summarize, the
AP results strongly corroborate the conclusion reached previously that the
conjunctive attractor dynamics produced by interactive networks directly
impair generalization performance.

4 Inhibitory Competition and Hebbian Learning

Although it is possible that any of a number of different biases could be
added to the interactive GeneRec network to improve generalization per-
formance, this article focuses on two such biases that have been widely used
and can be independently motivated for a variety of biological, psycholog-
ical, and computational reasons. These biases and their implementation in
the Leabra algorithm are discussed in the subsequent sections.

4.1 Inhibitory Competition. Roughly 15 to 20% of the neurons in the
cortex are GABAergic inhibitory interneurons (White, 1989; Gabbot & So-
mogyi, 1986). The importance of these neurons for controlling the positive
feedback loops between excitatory cortical pyramidal neurons is revealed
for example in the epileptic-like effects of GABA antagonists (Grinvald,
Frostig, & Lieke, 1988). Thus, any realistic model of the cortex should in-
clude a role for inhibitory competition. Many neural network formalisms
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Figure 11: Illustration in two dimensions (units) of how kWTA inhibition can
restrict the activation dynamics of an interactive network. (a) A network with-
out inhibition, which can explore all possible combinations of activation states.
(b) The effect of inhibition in restricting the activation states that can be explored
to those having a roughly constant level of activity (e.g., under the kWTA in-
hibition function described in the text), leading to faster and more constrained
attractor dynamics.

show the computational advantages of inhibitory competition (Grossberg,
1976; Kohonen, 1984; McClelland & Rumelhart, 1981; Rumelhart & Zipser,
1986). One such advantage is that inhibitory competition allows only the
most strongly excited representations to prevail, with this selection pro-
cess identifying the most appropriate representations for subsequent pro-
cessing. Furthermore, learning mechanisms are affected by this selection
process such that only the selected representations are re�ned over time
through learning, resulting in an effective differentiation and distribution
of representations.

In the context of the generalization problem, the selection and distri-
bution effects of inhibitory competition can result in individual units spe-
cializing on the input-output mapping for separable components (e.g., the
slots in the combinatorial problem explored in this article). When the units
are specialized in this way, combinatorial representations are facilitated.
Furthermore, inhibition has the effect of greatly constraining the activation
dynamics of an interactive network, as illustrated in Figure 11. Thus, a net-
work with inhibitory competition should settle more rapidly and with less
in�uence from the kinds of attractor dynamics that can impair generaliza-
tion.

Another way of thinking about the bene�ts of inhibitory competition
comes from the idea that given the general structure of the natural envi-
ronment, sparse distributed representations (i.e., with relatively few units
active at a time) are particularly useful (Barlow, 1989;Field, 1994). For exam-
ple, in visual processing, a given object can be de�ned along a set of feature
dimensions (e.g., shape, size, color, texture), with a large number of differ-
ent values along each dimension (e.g., many different possible shapes, sizes,
colors, textures). Assuming that these feature values are encoded individual
units (or small groups thereof) in a distributed representation, the overall
representation of a given object will activate only a relatively small subset
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of the entire set of feature units (i.e., the representations will be sparse).
More generally, it seems as though the world can be usefully represented
in terms of a large number of categories with a large number of exemplars
per category (animals, furniture, trees, etc.). If we again assume that only a
relatively few such exemplars are processed at a given time, a bias favor-
ing sparse representations is appropriate. The combinatorial generalization
problem has this structure, with only a few of the possible different bar
stimuli present at any given time.

To substantiate the argument further in favor of using sparse distributed
representations, Olshausen and Field (1996) developed a simulation that
showed that imposing a bias for developing this type of representation can
result in the development of realistic early visual representations (oriented
edge detectors) of natural visual scenes. The close �t between the simulated
representations and those in the early visual system suggests that the visual
system also uses a sparse distributed representational system.

Although seemingly straightforward, achieving a sparse distributed rep-
resentation is technically challenging, primarily because this case is dif�cult
to analyze mathematically within a probabilistic learning framework. The
problem is one of combinatorial explosion; one needs to take into account all
the different possible combinations of active and inactive units to analyze
a sparse distributed representation based on true inhibitory competition.
Thus, sparse distributed representations fall in a complex intermediate zone
between two easily analyzed frameworks (Hinton & Ghahramani, 1997):
(1) the winner-take-all (WTA) framework (Rumelhart & Zipser, 1986; Gross-
berg, 1976; Nowlan, 1990), where only one unit is allowed to be active at
a time—having a single active unit eliminates the combinatorial problems,
but also does not allow for distributed representations; and (2) the indepen-
dent units framework, where the units are considered to be (conditionally)
independent of each other (e.g., a standard backpropagation network)—this
allows the combined probability of an activation pattern to be represented
as a simple product of the individual unit probabilities (and for distributed
representations), but there is no inhibitory competition.

There have been a number of attempts to remedy the limitations of
these two analytical frameworks, by introducing distributed representa-
tions within a basically WTA framework, or by introducing sparseness
constraints within the independent units framework. However, the limi-
tations of these frameworks are dif�cult to overcome. Basically, any use of
WTA prevents the cooperativity and combinatoriality of true distributed
representations, and the need to preserve independence among the units
in the independent units framework prevents the introduction of any true
activation-based competition (see the discussion in O’Reilly, 1998).

Leabra achieves sparse distributed representations with true competi-
tion by using a k-winners-take-all (kWTA) mechanism, which generalizes
the WTA approach to k winners (Majani, Erlarson, & Abu-Mostafa, 1989). A
kWTA mechanism can enforce true competition among the units, while al-
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lowing for a (sparse) distributed representation across the subset of k units.
kWTA mechanisms have been analyzed for factors such as stability and
convergence onto k units and can be implemented with biologically plau-
sible lateral inhibition mechanisms (Majani et al., 1989; Fukai & Tanaka,
1997). However, they have not been analytically treated within a proba-
bilistic learning framework, due to the combinatorial explosion problems.
Nevertheless, the simple form of kWTA used in Leabra (described in detail
in the appendix) works well in bidirectionally connected networks and has
been shown to be useful for modeling a wide range of cognitive phenomena
(O’Reilly & Munakata, 2000).

4.2 Hebbian Learning. Although Hebbian learning has typically been
used as the primary form of learning in a range of models, it is used here as a
supplemental form of learning to complement a network learning primarily
from error-driven GeneRec. Hebbian learning by itself is simply not power-
ful enough to enable the learning of even moderately complex input-output
mappings and so cannot be considered a self-suf�cient learning mechanism
(as we will see below, Hebbian learning alone cannot learn thecombinatorial
generalization task explored in this article). However, there are a number
of ways of understanding why the use of Hebbian learning, computed on
the plus phase activations to reinforce the correct patterns, is bene�cial in
the context of error-driven learning.

First, error-driven and Hebbian learning have two complementary learn-
ing objectives, which can be referred to as task learning and model learning,
respectively. Error-driven learning accomplishes task learning because it is
speci�cally (and exclusively) driven by the demands of the task (i.e., the dis-
crepancies between actual and desired outputs). In contrast, model learning
has the objective of learning an internal model of the environment irrespec-
tive of speci�c tasks. From a machine learning perspective, task learning
amounts to learning the conditional probability distribution of the output
on the input, while model learning amounts to learning the entire (joint)
probability distribution (e.g., Rubinstein & Hastie, 1997).1. Given that Heb-
bian and error-driven learning have complementary objectives, combining
them makes sense and can generally lead to a more constrained, strongly
biased learning algorithm.

At a more detailed level, the bene�ts and limitations of Hebbian and
error-driven learning can be understood in terms of how locally they op-
erate. Hebbian learning is limited in what it can learn because each unit is
driven only by the local correlational structure present in its inputs; there is
no overall objective function guiding these local weight changes to achieve

1 As implemented in Hebbian learning, model learning really amounts to representing
only the correlational aspects of the environmental structure, not the entire joint proba-
bility distribution.
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a more distal output pattern somewhere else in the network. In contrast,
error-driven learning is ultimately driven by just such a distal error func-
tion, which is why it can learn complex problems using intermediate hidden
layers.

One of the bene�ts of combining Hebbian with error-driven learning can
thus be understood as enabling learning to take place even when the distal
error signals are weak or inconsistent across trials. Furthermore, units in
a purely error-driven network are typically underconstrained by the task
at hand and are also highly dependent on the responses of other units for
determining what they end up representing. This extreme interdependence
and lack of local constraint can lead to slow and ineffective learning in large,
many-layered networks. To the extent that Hebbian learning provides a use-
ful bias that is applied locally to each unit, it can shape learning locally and
apply individual constraints on unit representations, limiting the codepen-
dence problems.

From a biological perspective, the combination of error-driven GeneRec
learning and Hebbian learning actually provides a better �t to the known
properties of synaptic modi�cation (LTP/LTD) than does GeneRec alone
(O’Reilly, 1996a). The qualitative signs of GeneRec and Hebbian weight
changes are consistent except in two cases: (1) when the sending and receiv-
ing units are persistently active in both phases, Hebbian predicts a weight
increase (LTP) while GeneRec predicts no weight change; and (2) GeneRec
predicts a weight decrease (LTD) when the units are erroneously active (i.e.,
when the plus-phase activation coproduct is greater than that of the minus
phase in the GeneRec learning rule, equation 2.1), while Hebbian predicts no
weight change (assuming the the plus phase coproduct is zero). Therefore,
the combination of Hebbian and GeneRec is essentially just like Hebbian, ex-
cept that LTD should occur when the units are erroneously active, meaning
that the known Hebbian mechanisms are largely suf�cient.

Hebbian synaptic modi�cation appears to operate on the concentration
of postsynaptic calcium ions: lower levels of calcium produce LTD, and
higher levels produce LTP (Artola, Brocher, & Singer, 1990; Lisman, 1989,
1994; Bear & Malenka, 1994). Under this mechanism, Hebbian LTP results
from the calcium in�ux produced by persistent activation of sending and
receiving neurons. This mechanism can also produce the LTD required by
GeneRec for erroneously active units. Because erroneous activation means
that there is initial activation (in the minus or expectation phase, where the
actual network output is produced) followed by inactivation (in the plus
or outcome phase, where the target network output is experienced), the
initial activation will allow calcium to enter the cell, but the subsequent
inactivation prevents the concentration from reaching LTP levels, resulting
in LTD.

In the context of the generalization problem, Hebbian learning can fa-
cilitate good generalization by encouraging units to represent the strongest
aspects of the correlational structure in the input, which are the correla-
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tions present in the activations of individual lines within a given slot and
in the input-output mapping between lines and line identity units. Thus,
Hebbian learning should encourage units to specialize on representing in-
traslot information, producing a more componential representation that can
be recombined for novel inputs to produce good generalization.

The implementation of Hebbian learning in Leabra is essentially the same
as in competitive learning (Rumelhart & Zipser, 1986; Nowlan, 1990:

Dwij D 2 (xC
i yC

j ¡ yC
j wij) D 2 yC

j (xC
i ¡ wij) (4.1)

for sending unit activation xC
i and receiving unit activation yC

j (both in the
plus phase) with learning rate 2 . Rumelhart and Zipser (1986) showed that
this equation can be interpreted as producing weight values that converge
on the conditional probability that the sending unit is active given that the
receiving unit is active, P(xi D 1|yi D 1), assuming that the activation states
re�ect theprobability that the unit is active (a detailed derivation is provided
in the appendix). In the context of a competitive activation function, a given
receiving unit is active only when a relatively large number of inputs align
with its weights, meaning that this conditional probability learning comes
to re�ect the strong correlations in the inputs. As explained in detail in
the appendix, this Hebbian learning term is combined additively with the
GeneRec error-driven learning term at every connection in the network.

One limitation of the Hebbian learning algorithm is that the weights lin-
early re�ect the strength of the conditional probability. This linearity can
limit the network’s ability to focus on only the strongest correlations, while
ignoring weaker ones. In the combinatorial generalization task, for example,
any “spurious” correlations between input patterns across different slots
will be faithfully encoded by linear-Hebbian units and prevent good gener-
alization. Thus, it is useful to include a further bias on the learning system to
encode only the strongest correlations. One way of achieving this goal is to
use subtractive normalization instead of the multiplicative normalization
used in the competitive learning rule, because subtractive normalization
moves the weights toward extrema, while multiplicative normalization re-
tains a linear proportionality to the correlation strength (Miller & MacKay,
1994; Goodhill & Barrow, 1994). However, the completely binary weights
produced by subtractive normalization are not likely to be generally useful,
especially in more complex tasks and in the context of error-driven learn-
ing, where graded weight values are required to balance the contribution
of individual units to multiple different aspects of problems.

The approach taken here is to introduce a contrast enhancement func-
tion that magni�es the stronger weights and shrinks the smaller ones in a
parametric, continuous fashion. This contrast enhancement is achieved by
passing the linear weight values computed by the learning rule through a
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Figure 12: Effective weight value as a function of underlying linear weight
value, showing contrast enhancement of correlations around the middle values
of the conditional probability as represented by the linear weight value. The
gain parameter, c D 6, controls the sharpness of the sigmoid, and the midpoint
of the function is shifted upward by the offset parameter h D 1.25.

sigmoidal nonlinearity of the following form (see Figure 12):

Owij D
1

1 C
±
h

wij

1¡wij

²¡c , (4.2)

where Owij is the contrast-enhanced weight value, and the sigmoidal function
is parameterized by an offseth and a gain c . The offset (which is multiplica-
tive but moves the middle of the sigmoid up or down in an offset-like
fashion) determines where the threshold for the nonlinearity is located, and
the gain determines how sharp the nonlinearity is. A gain value of 6 and an
offset of 1.25 works well for a wide range of problems (O’Reilly& Munakata,
2000). In the combinatorial generalization problem, a higher threshold (i.e.,
a higher h ) for correlations to be re�ected in the weights should produce
even better isolation of the slot representations in the hidden layer; indeed,
a threshold of 1.5 worked better than 1.25, and was used for the results
reported here.

5 Generalization with Inhibitory Competition and Hebbian Learning

To test the importance of inhibitory competition and Hebbian learning for
improving the generalization performance of an interactive error-driven
network (GeneRec), a Leabra network was run on the combinatorial gener-
alization task. The network had 100 hidden units with the kWTA k param-
eter set to 25 units active (25% activity is the default), the k was set to 8 for
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Figure 13: Generalization results comparing Leabra (GeneRec plus inhibitory
competition and Hebbian learning) with standard feedforward backpropaga-
tion (Bp) and interactive GeneRec. The additional biases in Leabra result in much
better generalization than even feedforward backpropagation.

the output layer, and the learning rate was .01 (see the appendix for other
standard parameters and equations). The results clearly indicate that these
biases greatly facilitate generalization in an interactive network (see Fig-
ure 13, speci�cally the comparison between the two interactive networks
using exactly the same error-driven learning rule, GeneRec and Leabra).
In the best case of the 10 Leabra networks, generalization error was only
.008. If we extrapolate this error on the 500 test cases to the entire space of
test items, the network has achieved nearly perfect generalization to over
4 million different patterns based on learning only 100. The average gener-
alization performance corresponds in the extrapolation to getting over 3.5
million problems correct based on the 100 training patterns.

One indication that Hebbian learning is speci�cally important for the
generalization performance of Leabra comes from the time course of gener-
alization over training (see Figure 14). Although the network learns the task
after only 10 epochs or fewer of training, generalization performance does
not start to improve signi�cantly until roughly 200 or more epochs. In con-
trast, the backpropagation network starts to generalize much earlier, and
this generalization generally parallels learning performance on the task. Bp
takes roughly 50 epochs to learn the task, during which time most of the
generalization is achieved.

An obvious way to determine the importance of Hebbian learning is
to run a Leabra network without it; this is then just a GeneRec network
with inhibitory competition. Such a network performs quite badly on this
task, having an average generalization error of .992 (§.00109 standard er-
ror of the mean[SEM]). Thus, it is clear that Hebbian learning is essential.
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Figure 14: Time course of generalization in Leabra (best generalizing network)
and Bp, showing that generalization performance in Leabra starts to improve
well only after the task has been learned by error-driven learning (which occurs
within the �rst 10 epochs). This identi�es Hebbian learning as speci�cally im-
portant. In contrast, generalization in Bp begins much more rapidly, and more
closely parallels the time course of learning (Bp takes roughly 50 epochs to learn
the task).

However, Hebbian learning cannot even begin to learn this task on its own,
as a run of Leabra with only Hebbian learning (together with the kWTA
inhibitory competition) demonstrates (see Figure 15). Note that Hebbian
learning without inhibitory competition does noxt typically work very well,
because the positive feedback nature of Hebbian learning requires the selec-
tion and differentiation pressure of inhibitory competition. Thus, although it
is insuf�cient on its own in this task, inhibitory competition is nevertheless
playing an important role. Other tasks have shown that inhibitory learn-
ing can make an important contribution on its own (O’Reilly & Munakata,
2000).

Anexamination of theweights of a trained Leabra network (see Figure 16)
shows that individual hidden units are parceling the task up into the log-
ical separable components of individual lines within a given slot. Having
represented the task in such a separable fashion, the units in the network
can easily be recombined in novel ways to process the novel testing items,
thereby achieving good generalization. As a useful simpli�cation, one can
understand the interaction between error-driven and Hebbian learning in
forming these representations as follows: error-driven learning (together
with inhibitory competition) ensures that different units take account of
different aspects of the problem and that all aspects are covered such that
the problem is actually solved. Hebbian learning operates slowly and re-
�nes the hidden unit representations so that they encode only the strongest
correlations; because these are the individual line elements, the weights



1224 Randall C. O’Reilly

0 50 100 150 200
Epochs

0

200

400

600

800

T
ra

in
in

g
 E

rr
o

r 
(S

S
E

)

Timecourse of Learning

Hebb Only
Leabra

Figure 15: Time course of learning for a version of Leabra with only Hebbian
learning (Hebb only), compared to the standard case with both error-driven and
Hebbian learning (Leabra). The kWTA inhibitory competition is present in both
cases.

come to emphasize these and exclude inputs from other slots, which are
more weakly correlated.

Given the kind of combinatorial representations learned by the Leabra
network, it is not too surprising that it exhibits an almost exactly propor-
tional response to the 75% and 50% overlapping test items used to ana-
lyze the Bp and GeneRec networks previously (see Figure 17). Furthermore,
Leabra produces only a small proportion of spurious (malformed) outputs
compared to Bp or GeneRec (see Figure 18). Interestingly, the random initial
weights in the untrained Leabra network produce a signi�cant amount of
pattern separation, which then disappears after training. This is consistent
with the idea that sparser levels of activation, with random weights, produce
more pattern separation (O’Reilly& McClelland, 1994). Thus, the bene�ts of
inhibitory competition for damping attractor dynamics come at the cost of
increasing pattern separation, with random weight patterns. Over learning,
the inhibitory competition provides a bene�cial pressure for shaping the
weights (as discussed previously) and overcomes the initial conjunctivity
bias.

6 Generalization with Exceptions

One potential objection to the above results showing an advantage for in-
hibitory competition and Hebbian learning is that these biases might be so
speci�c to the purely regular combinatorial case that the network would
break down in a task that also had irregularities or exceptions to the general
rule. The ability to handle both regularities and exceptions is important for
dealing with many language phenomena, including the well-studied cases
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Figure 16: Weights for a typical hidden unit in the Leabra network after training
(see Figure 6 for details). Both feedforward weights from the input layer and
feedback weights from the output layer are shown. (The Leabra weights are
symmetric, so these feedback weights also indicate the nature of the hidden-to-
output weights. Also note that there are no within-layer connections, as indi-
cated by the zero-value gray squares; the kWTA inhibition in Leabra is computed
directly, not via inhibitory weights.) It is clear that the units are dividing up the
task into separable mappings for each slot — each unit participates in mapping
a single line within a slot (in this case, the middle horizontal line in the lower
left-hand slot) to its corresponding identi�cation output. This division enables
combinatorial generalization , explaining the good generalization results. Note
that this unit, like many others, also had a weak representation of inputs in other
slots, presumably due to relatively strong spurious correlations across slots.

of the English past tense and spelling-to-sound mappings (Rumelhart & Mc-
Clelland, 1986; Seidenberg & McClelland, 1989; Plaut et al., 1996; Plunkett
& Marchman, 1996). We can explore this issue by introducing exceptions
into the combinatorial generalization task explored here.

Exceptions were generated for any pattern having a vertical bar in the last
(right-most) position in the �nal (fourth) slot (like the past tense in�ectional
suf�x that appears at the end of a word), with the consequence that the
output pattern for the third slot was repeated in the fourth slot, instead of
this fourth output slot re�ecting the actual inputs from the fourth slot. Thus,
these exceptions required there to be interactions between slots, instead of
their being completely independent, as in the regular mapping (which was
exactly as in the previous task). To equalize the opportunity for generaliza-
tion compared to the fully regular task, the networks were trained on 100
randomly generated regular cases (as before) plus 27 randomly generated
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Figure 17: Average pairwise overlap (normalized dot product or cosine) be-
tween hidden patterns corresponding to inputs that differ by (a) 75% (one out
of four slots different) and (b) 50% (two out of four slots different). Although
with random weights the inhibitory competition in Leabra results in signi�cant
pattern separation (very different hidden representations for similar inputs),
training produces a network with proportional responding to input differences.

Leabra Bp GeneRec
0

100

200

300

400

500

T
o

ta
l M

al
fo

rm
ed

 O
u

tp
u

ts

Spurious (Malformed) Attractors

75% Ovlp
50% Ovlp

Figure 18: Number of malformed outputs out of 500 total for the 75% and 50%
overlap inputs. An output is wellformed if each of the slot outputs corresponds
to one of the vocabulary of possible slot outputs, and malformed otherwise.
The Leabra network produces largely well-formed outputs, consistent with the
generalization results.

irregulars (patterns were generated at random until 100 regulars had accu-
mulated; the proportion of irregulars is close to the expected 20% having a
vertical line in one out of �ve positions).

The generalization results for the three main algorithms (Leabra, Bp,
GeneRec) are shown in Figure 19, where it is clear that the biases in Leabra
still enable better generalization even in a task with exceptions. The overall
level of generalization was worse than in the fully regular case, as one would



Generalization in Interactive Networks 1227

Leabra Bp GeneRec
0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
al

iz
at

io
n

 E
rr

o
r

Exceptions: Leabra vs Bp, GeneRec

Overall
Regulars
Exceptions

Figure 19: Generalization results (proportion error on test set of 500 items, and
broken down into proportion error for regulars and exceptions separately) for
the three algorithms (Leabra, Bp, and GeneRec) on the problem with exceptions.
Although generalization performance is naturally worse than in the purely reg-
ular case, Leabra still performs better than the other algorithms (substantially
better on regulars and marginally better on exceptions), indicating the advan-
tages of the inhibitory competition and Hebbian learning biases.

expect given the more complex task being trained. However, the Leabra net-
work is generalizing on the exceptional mapping better than either of the
other networks (though not by much in the case of the Bp network), mean-
ing that it is capable of systematically encoding more complex interactions
between slots and exhibiting substantial generalization on that basis. Be-
cause the regular performance is better than the exception performance, it
is clear that the biases in Leabra are speci�cally advantageous for the regular
mapping, but this does not come at a cost to the exceptions.

The training error curves (not shown) were basically the same as the fully
regular case, with just one epoch more required on average to reach a 0 error
criterion (7.7 epochs in the fully regular case, 8.7 in the exception case). In
examining the weights of the Leabra network (not shown), one could �nd
units that encoded the exceptional cases by having input weights from the
last position of the �nal slot, plus weights from the third slot, and a mapping
to the fourth slot output appropriate for the third slot weights.

To follow up on the issue of the effect of number of hidden units on
generalization, Figure 20 shows that even in the task with exceptions, larger
hidden layers produce better generalization. Again, these results can be
understood in terms of the bene�ts of a larger sample of idiosyncratic units
that appear to outweigh the over�tting costs associated with this task, which
is still deterministic, even if somewhat more complex.

In other work, the Leabra algorithm has also been shown to exhibit sys-
tematic encodings of complexly interacting stimuli, resulting in good gen-
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Figure 20: Generalization results for Bp with different hidden layer sizes on the
problem with exceptions. Even with exceptions, a larger hidden layer improves
generalization.

eralization. In particular, the spelling-to-sound model presented in O’Reilly
and Munakata (2000) replicated the generalization performance of the back-
prop networks reported in Plaut et al. (1996) , but did so using simpler and
more surface-valid input-output representations than the carefully crafted
representations used by Plautet al. (1996). Table1 shows the nonword gener-
alization data from this model compared with Plaut et al. (1996) and human
data on a range of different nonword lists. To pronounce the nonwords cor-
rectly, the model has to encode complex combinations of both independent
and conjunctive (i.e., taking into account multiple letters) letter-phoneme
mappings. Thus, it should be clear that the bene�ts of the biases in Leabra
are not restricted to simple, purely regular mappings.

7 Generalization in Handwritten Digit Recognition

To substantiate further the generality of the results on the tasks studied
above, an additional task with very different characteristics was explored.
This task is handwritten digit recognition, which has been widely used in
the literature. The speci�c digit set employed, from Nowlan (1990), has 48
different samples of eachof the10 digits (0–9) encoded as thresholdedbinary
intensities in a 16 £ 16 input grid. Because the digits are handwritten, they
are highly variable (noisy) within a category and overlap considerably with
those in other categories. The challenge is to form category boundaries that
are suf�ciently general to provide reasonable generalization performance to
novel instances, based on these noisy and overlapping training exemplars.
Because of the noisy inputs, there is a strong possibility for over�tting in
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Table 1: Summary of Nonword Reading Performance in the Leabra Model Com-
pared to the PMSP (Plaut et al., 1996) and Human Data.

Nonword Set Leabra PMSP People

Glushko (1979) regulars 95.3 97.7 93.8
Glushko (1979) exceptions 97.6 100.0 95.9
McCann & Besner (1987) controls 85.9 85.0 88.6
McCann & Besner (1987) homophones 92.3 N.A. 94.3
Taraban & McClelland (1987) 97.9 N.A. 100.0a

Notes: The Glushko data show the results when alternative outputs that
are consistent with the training corpus are allowed.
aHuman accuracy for the Taraban & McClelland set was not reported
but was presumably near 100 percent (the focus of the study was on
reaction times).
Source: Data from O’Reilly & Munakata (2000).

this domain. Training was performed on 32 instances per digit, with gener-
alization testing on the remaining 16.

The generalization results for the three basic algorithms with 64 hidden
units each are shown in Table 2a. This replicates the same pattern seen pre-
viously, where GeneRec generalizes considerably worse than feedforward
backpropagation (Bp), and Almeida-Pineda (AP) performs intermediately
(weight initialization variance was .5, producing moderate amounts of feed-
back weights that are not increased with training). Critically, the extra biases
in Leabra produce much better generalization in a fully recurrent network,
with generalization error slightly better than the Bp network with an equiv-
alent number of hidden units.

The effect of number of hidden units, shown in Table 2b, shows an oppo-
site pattern from previous results, with more hidden units leading to worse
generalization in Bp and to a lesser extent in GeneRec, but not in Leabra
(which actually shows the opposite pattern). This is to be expected because
this task has noisy inputs, which allow for the units to over�t the speci�c, id-
iosyncratic features of the training inputs and thus not generalize as well to
the novel testing inputs. However, the extra biases of the Leabra algorithm
prevent it from this over�tting (e.g., the Hebbian learning forces the units to
extract the central tendency of the input patterns corresponding to a given
digit category), and it appears to bene�t from a richer, more redundant
distributed representation that comes from having a larger hidden layer.
Finally, the fact that the best Bp network (with 15 hidden units) performs
slightly better than Leabra (with 64 hiddens) is not of central relevance to
the point of this article. The critical thing is that Leabra performs much better
than GeneRec.
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Table 2: Generalization in Digit Recognition Networks.

a.

General- Standard
ization Error

Algorithm Error of the Mean

Leabra .131 .00456
Bp .151 .00482
AP .202 .0126
GeneRec .279 .0323

b.

Leabra Bp GeneRec

General- Standard General- Standard General- Standard
ization Error ization Error ization Error

Hiddens Error of the Mean Error of the Mean Error of the Mean

15 .221 .0127 .12 .00867 .236 .00809
30 .164 .00878 .131 .0106 .231 .0106
64 .131 .00456 .151 .00482 .279 .0323

Notes: (a) Generalization results for digit recognition for the different algorithms (64 hid-
den units), shown as proportion generalization error on the 160 testing items. (b) Effects
of number of hidden units, with an indication of over�tting with larger hidden layers in
Bp and to a lesser extent in GeneRec, but not in Leabra (which actually shows the opposite
pattern).

8 Discussion

This article has shown that an attempt to make error-driven backpropa-
gation learning more biologically plausible by using bidirectional activa-
tion propagation to communicate error signals has the unfortunate con-
sequence of producing bad generalization. This impaired generalization
can be attributed to the conjunctive attractor dynamics of an otherwise
unconstrained interactive network, which interfere with the ability to sys-
tematically form novel combinatorial representations. However, by adding
inhibitory competition and Hebbian learning to the interactive network,
good generalization is restored, and the resulting algorithm satis�es a va-
riety of constraints from the biological, psychological, and computational
perspectives.

The generalization results presented here demonstrate that neural net-
works are capable of substantial levels of generalization basedon a relatively
small sample of the environment (e.g., 100 training patterns out of 4.1 mil-
lion possible, resulting in an average of 3.5 million correct responses). Such
results should help to counter the persistent claims that neural networks are
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incapable of producing systematic behavior based on statistical learning of
the environment (Marcus, 1998; Pinker & Prince, 1988).

There is reason to believe that the particular combination of mechanistic
principles embodied by the Leabra algorithm has a wide range of appli-
cability. One can identify six core such principles: interactivity, inhibitory
competition, distributed representations, error-driven task learning, Heb-
bian model learning, and an overarching concern for biological plausibility.
These principles re�ect important themes that have played a central role
in a large number of neural network models and theories over the years
(see O’Reilly, 1998, for a review). This article adds to this existing body of
research by showing that there can be important computational advantages
to combining these mechanisms together into one coherent framework. In
addition to the speci�c issue of generalization that was the focus of this
article, this framework can be used to understand a wide range of cogni-
tive phenomena and provides a uni�ed way of implementing a number of
existing cognitive models (O’Reilly & Munakata, 2000).

Appendix: Implementational Details

A.1 Pseudocode. The pseudocode for Leabra is given here, showing
exactly how the pieces of the algorithm described in more detail in the
subsequent sections �t together.

Outer loop: Iterate over events (trials) within an epoch. For each event:

1. Iterate over minus and plus phases of settling for each event.

(a) At start of settling, for all units:

i. Initialize all state variables (activation, vm, etc.).

ii. Apply external patterns (clamp input in minus, input
and output in plus).

(b) During each cycle of settling, for all nonclamped units:

i. Compute excitatory netinput (ge(t) or gj—equation
A.3).

ii. Compute kWTA inhibition for each layer, based on gH
i

(equation A.7):

A. Sort units into two groups based on gH
i : top k

and remaining k C 1 to n.

B. If basic, �nd k and k C 1th highest; if average
based, compute average of 1 ! k and kC 1 ! n.

C. Set inhibitory conductance gi from gH
k and gH

kC1
(equation A.6).
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iii. Compute point-neuron activation combining excita-
tory input and inhibition (equation A.1).

(c) After settling, for all units:

i. Record �nal settling activations as either minus or plus
phase (y¡

j or yC
j ).

2. After both phases, update the weights (based on linear current weight
values) for all connections:

(a) Compute error-driven weight changes (equation A.8) with soft
weight bounding (equation A.13).

(b) Compute Hebbian weight changes from plus-phase activa-
tions (equation 4.1).

(c) Compute net weight change as weighted sum of error driven
and Hebbian (equation A.14).

(d) Increment the weights according to net weight change, and
apply contrast enhancement (equation 4.2).

A.2 Point NeuronActivationFunction. Leabra uses a point neuronacti-
vation function that models the electrophysiological properties of real neu-
rons, while simplifying their geometry to a single point. This function is
nearly as simple computationally as the standard sigmoidal activation func-
tion, but the more biologically-based implementation makes it considerably
easier to model inhibitory competition, as described below. Further, using
this function enables cognitive models to be related to more physiologi-
cally detailed simulations more easily, thereby facilitating bridge building
between biology and cognition.

The membrane potential Vm is updated as a function of ionic conduc-
tances g with reversal (driving) potentials E as follows:

dVm(t)
dt

D t
X

c
gc(t)gc(Ec ¡ Vm(t)) (A.1)

with 3 channels (c) corresponding to e excitatory input, l leak current, and
i inhibitory input. Following electrophysiological convention, the overall
conductance is decomposed into a time-varying component gc(t) computed
as a function of the dynamic state of the network, and a constant gc that
controls the relative in�uence of thedifferent conductances.Theequilibrium
potential can be written in a simpli�ed form by setting the excitatory driving
potential (Ee) to 1 and the leak and inhibitory driving potentials (El and Ei)
of 0:

V1
m D

gege

gege C glgl C gigi
, (A.2)
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which shows that the neuron is computing a balance between excitation
and the opposing forces of leak and inhibition. This equilibrium form of
the equation can be understood in terms of a Bayesian decision-making
framework (O’Reilly & Munakata, 2000).

The excitatory net input-conductance ge(t) or gj is computed as the pro-
portion of open excitatory channels as a function of sending activations
times the weight values:

gj D ge(t) D hxiwiji D
1
n

X

i
xiwij. (A.3)

The inhibitory conductance is computed via the kWTA function described
in the next section, and leak is a constant.

Activation communicated to other cells (yj) isa thresholded(H) sigmoidal
function of the membrane potential with gain parameter c ,

yj(t) D
1±

1 C 1
c [Vm (t)¡H]C

² , (A.4)

where [x]C is a threshold function that returns 0 if x < 0 and x if x > 0.
Note that if it returns 0, we assume yj(t) D 0, to avoid dividing by 0. As it
is, this function has a very sharp threshold, which interferes with graded
learning mechanisms (e.g., gradient descent). To produce a less discontinu-
ous deterministic function with a softer threshold, the function is convolved
with a gaussian noise kernel, which re�ects the intrinsic processing noise of
biological neurons,

y¤
j (x) D

Z 1

¡1

1p
2p s

e¡z2 /(2s2 )yj(z ¡ x)dz, (A.5)

where x represents the [Vm(t) ¡ H]C value, and y¤
j (x) is the noise-convolved

activation for that value. In the simulation, this function is implemented
using a numerical lookup table, as an analytical solution is not possible.

A.3 k-Winners-Take-All Inhibition. Leabra uses a kWTA function to
achieve sparse distributed representations, with two different versions hav-
ing different levels of �exibility around the k out of n active units constraint.
Both versions compute a uniform level of inhibitory current for all units in
the layer as follows,

gi D gH
kC1 C q(gH

k ¡ gH
kC1), (A.6)

where 0 < q < 1 is a parameter for setting the inhibition between the upper
bound of gH

k and the lower bound of gH
kC1. These boundary inhibition values
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are computed as a function of the level of inhibition necessary to keep a unit
right at threshold,

gH
i D

g¤
e Nge(Ee ¡ H) C gl Ngl(El ¡ H)

H ¡ Ei
, (A.7)

where g¤
e is the excitatory net input without the bias weight contribution.

This allows the bias weights to override the kWTA constraint.
In the basic version of the kWTA function, which is relatively rigid about

the kWTA constraint, gH
k and gH

kC1 are set to the threshold inhibition value
for the kth and k C 1th most excited units, respectively. Thus, the inhibition
is placed exactly to allow k units to be above threshold and the remainder
below threshold. For this version, the q parameter is almost always .25,
allowing the kth unit to be suf�ciently above the inhibitory threshold.

In the average-based kWTA version, gH
k is the average gH

i value for the
top k most excited units, and gH

kC1 is the average of gH
i for the remaining n¡k

units. This version allows for more �exibility in the actual number of units
active depending on the nature of the activation distribution in the layer
and the value of the q parameter (typically between .5 and .7 depending on
the level of sparseness in the layer, with a default value of .6). The simula-
tions used the average-based version for the hidden layer (which can take
advantage of the �exibility) with q D .6 (default), and the basic version for
the output layer (which does not need the �exibility), with q D .25 (default).
Performance using just the basic version for all layers was signi�cantly
worse (generalization error of 0.239) than the more appropriately biased
case with average-based in the hidden layer (0.138) but was still better than
backpropagation (0.401).

Activation dynamics similar to those produced by the kWTA function
have been shown to result from simulated inhibitory interneurons that
project both feedforward and feedback inhibition (O’Reilly & Munakata,
2000). Thus, although the kWTA function is somewhat biologically implau-
sible in its implementation (e.g., requiring global information about activa-
tion states and using sorting mechanisms), it provides a computationally
effective approximation to biologically plausible inhibitory dynamics.

A.4 Error-Driven Learning. As indicated in the text, Leabra uses the
symmetric midpoint version of the GeneRec algorithm (O’Reilly, 1996a),
which is functionally equivalent to the deterministic Boltzmann machine
and contrastive Hebbian learning (CHL) (Hinton, 1989b; Movellan, 1990).
The networksettles in two phases—an expectation (minus) phase, where the
network’s actual output is produced and an outcome (plus) phase, where
the target output is experienced—and then computes a simple difference
of a pre- and postsynaptic activation product across these two phases (as
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shown in equation 2.1 and reproduced here),

D errwij D (xC
i yC

j ) ¡ (x¡
i y¡

j ) (A.8)

for sending unit xi and receiving unit yj in the two phases.

A.5 Hebbian Learning. The simplest form of Hebbian learning adjusts
the weights in proportion to the product of the sending (xi) and receiving
(yj) unit activations: Dwij D xiyj. The weight vector is dominated by the
principal eigenvector of the pairwise correlation matrix of the input, but it
also grows without bound. Leabra uses essentially the same learning rule
used in competitive learning or mixtures-of-gaussians (Rumelhart & Zipser,
1986; Nowlan, 1990), which can be seen as a variant of the Oja normalization
(Oja, 1982). This learning rule was shown in equation 4.1, and is reproduced
here:

Dhebbwij D xC
i yC

j ¡ yC
j wij D yC

j (xC
i ¡ wij ) (A.9)

After Rumelhart and Zipser (1986) and O’Reilly and Munakata (2000), we
can see that this equation converges on the conditional probability that the
sender isactive given that the receiver isactive.First,we write theactivations
as encoding the probability that the units are active for the current input
pattern, indexed by t, and sum the weight changes over all patterns:

Dwij D 2
X

t
[P(yj |t)P(xi |t) ¡ P(yj |t)wij]P(t)

D 2

³
X

t
P(yj |t)P(xi |t)P(t)¡

X

t

P(yj |t)P(t)wij

´
. (A.10)

Then we set Dwij to zero and solve to �nd the equilibrium weight value,
resulting in:

0 D 2

³
X

t
P(yj |t)P(xi |t)P(t)¡

X

t
P(yj |t)P(t)wij

´

wij D
P

t P(yj |t)P(xi |t)P(t)
P

t P(yj |t)P(t)
. (A.11)

The interesting thing to note here is that the numerator
P

t P(yj |t)P(xi |t)P(t)
is actually the de�nition of the joint probability of the sending and receiv-
ing units both being active together across all the patterns t, which is just
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P(yj , xi). Similarly, the denominator
P

t P(yj |t)P(t) gives the probability of
the receiving unit being active over all the patterns, or P(yj). Thus, we can
rewrite the above equation as

wij D
P(yj, xi)

P(yj)

D P(xi |yj), (A.12)

at which point it becomes clear that this fraction of the joint probability
over the probability of the receiver is just the de�nition of the conditional
probability of the sender given the receiver.

A.6 Combining Error-Driven and Hebbian Learning. Error-driven
and Hebbian learning are combined additively at each connection to pro-
duce a net weight change.Two equations areneeded:a soft weightbounding
equation to to keep the error-driven component within the same 0–1 range
of the Hebbian term and the combination equation.

Soft weight bounding with exponential approach to the 0–1 extremes is
implemented using

D sberrwik D [D err]C (1 ¡ wik) C [D err]¡wik, (A.13)

where D err is the error-driven weight change, and the [x]C operator returns
x if x > 0 and 0 otherwise, while [x]¡ does the opposite, returning x if x < 0,
and 0 otherwise.

The net weight change equation combining error-driven and Hebbian
learning (which also includes the learning rate parameter 2 ) uses a normal-
ized mixing constant khebb:

Dwij D 2 [khebb(D hebb) C (1 ¡ khebb)(D sberr)]. (A.14)

Three different values of khebb were used to explore the relative contributions
of error-driven and Hebbian learning: khebb D 0 gives purely error-driven
learning (plus the kWTA inhibition constraint), khebb D .02 is the value used
for combining Hebbian and error driven, producing the main results, and
khebb D 1 gives purely Hebbian learning (plus the kWTA inhibition con-
straint). Note that only a relatively small amount of Hebbian learning is
required to achieve the bene�ts; this is in part because the Hebbian learning
factor is so persistently present on each trial of learning and shaping the
learning so reliably according to the local correlations present.
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