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Abstract

The prefrontal cortex is widely believed to play an important role in facilitating people’s ability
to switch performance between different tasks. We present a biologically-based computational model
of prefrontal cortex (PFC) that explains its role in task switching in terms of the greater flexibility
conferred by activation-based working memory representations in PFC, as compared with more slowly
adapting weight-based memory mechanisms. Specifically we show that PFC representations can be
rapidly updated when a task switches via a dynamic gating mechanism based on a temporal-differences
reward-prediction learning mechanism. Unlike prior models of this type, the present model develops all
of its internal representations via learning mechanisms as shaped by the demands of continuous periodic
task switching. This advance opens up a new domain of research into the interactions between working
memory task demands and the representations that develop to meet them. Results on a version of the
Wisconsin card sorting task are presented for the full model and a number of comparison networks that
test the importance of various model features. Furthermore, we show that a lesioned model produces
perseverative errors like those seen in frontal patients.
© 2002 Cognitive Science Society, Inc. All rights reserved.
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1. Introduction

We’ve probably all had the experience of trying to pull open a door that should be pushed,
or vice versa. When it doesn’t work, you have to switch your approach and try the opposite
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maneuver. Sometimes, however, you might catch yourself failing to switch, and retrying the
incorrect maneuver again. This kind ofperseveration behavior is a hallmark of patients with
prefrontal cortex (PFC) damage. The classic task for demonstrating the involvement of the
PFC in task switching is the Wisconsin card sorting task (WCST;Grant & Berg, 1948; Heaton,
Chelune, Talley, Kay, & Curtiss, 1993; Milner, 1963), though the literature on this remains
somewhat controversial (e.g.,Mountain & Snow, 1993; Reitan & Wolfson, 1994; Stuss et al.,
2000). Further evidence of PFC involvement in task switching comes from tasks related to the
WCST (e.g.,Dias, Robbins, & Roberts, 1997; Owen et al., 1993; Roberts, Robbins, & Everitt,
1988), including tasks demonstrating task switching impairments in children presumably due
PFC immaturity (e.g.,Munakata & Yerys, 2001; Zelazo, Frye, & Rapus, 1996) and other
kinds of task switching paradigms (e.g.,Burgess, Veitch, de Lacy Costello, & Shallice, 2000).
Despite this evidence for the involvement of the PFC, the precise mechanistic role of this brain
area in task switching remains unclear. In this paper we present a biologically-based model
performing a WCST-like task switching task that helps to illuminate the mechanistic role that
the PFC plays in task switching.

Specifically, our model is founded on the idea that the PFC is specialized for activation-based
working memory (Braver & Cohen, 2000; Frank, Loughry, & O’Reilly, 2001; Miller & Cohen,
2001; O’Reilly, Braver, & Cohen, 1999; O’Reilly & Munakata, 2000; O’Reilly, Noelle, Braver,
& Cohen, 2002). By representing information as maintained activation states, the PFC can
contribute to task switching by rapidly updating these activation states in response to feedback.
This activation switching can be much faster than the structural changes that underlie adaptation
of connection strengths between neurons (as captured in standard neural network learning
mechanisms). This rapid updating in PFC can be specifically triggered by a dynamic gating
mechanism that controls the updating of activation-based working memories maintained in the
PFC (O’Reilly & Munakata, 2000; O’Reilly et al., 2002).

The present model goes beyond earlier models of task switching involving a dynamically
gated PFC system (O’Reilly & Munakata, 2000; O’Reilly et al., 2002) by developing PFC and
other representations entirely from experience-driven learning mechanisms operating in the
context of repeatedly switching among a set of tasks. Our previous models of PFC function
have used hand-coded PFC representations, so this represents an important advance that opens
up many new avenues of research into the nature of PFC representations as a function of task
demands. Nevertheless, we build upon earlier work by employing a similar dynamic gating
mechanism based on reward-prediction learning mechanisms. We begin with a summary of the
task switching task, followed by a description of the model. We present results from both the
dynamically-gated PFC model and a number of comparison models that systematically explore
both the overall contribution of the PFC in the model, and the effects of various mechanisms
that influence the dynamic gating process. We conclude with a discussion of the implications
of having a dynamic gating model that can develop useful internal representations.

2. The dynamic naming task

The task we use for testing the model is a modified version of the widely-studied Wisconsin
card sorting task, where the inputs are cards having feature values along different stimulus
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Fig. 1. The task. Each stimulus has three feature dimensions (e.g., shape, color, size) with three possible feature levels
(circle/square/triangle, red/green/blue, small/medium/large) and the hidden dimension is the size of the presented
sample stimulus. In the first two trials the subject chose the sample matching level in the wrong dimension and
consequently got negative feedback. In the last trial, the correct dimension and feature value is selected, leading to
positive feedback.

dimensions (color, shape, number), and the essence of the task is to focus on one of these
dimensions for a series of trials, and then switch to a different dimension. In our version, the
output involves naming a feature instead of sorting cards into piles. Thus, we refer to this as the
dynamic naming task. Specifically, each stimulus item has five feature dimensions with three
possible feature levels in each of the dimensions. The goal of the task is to guess an unspoken
target dimension, and report the feature value along that dimension for each item (Fig. 1). If
the model outputs the correct feature value along the target dimension for the current stimulus,
it is rewarded (otherwise not)—the patterns of reward can be used to guide the search for the
unspoken dimension. The same target dimension (i.e., the subtask) is used for a period ofn
trials (typicallyn = 50), after which another target dimension is selected, requiring the model
to switch to a new subtask.

The basic strategy to perform this task correctly is a simple win-stay, lose-shift type of rule:

• If a positive feedback is received, continue with the current subtask.
• If a negative feedback is received, switch to another subtask.

We show that this strategy emerges naturally from a reward-based gating mechanism that
controls the maintenance of information in PFC working memory. The current stimulus di-
mension (subtask) is maintained in PFC until sufficient negative feedback results in the search
for a different subtask (Fig. 1).

3. The model

Fig. 2 shows the structure of the model, which has the same basic elements as our previ-
ous task-switching models, and, like them, is implemented using the Leabra framework for
the activation and learning mechanisms (O’Reilly, 1998; O’Reilly & Munakata, 2000) (see
Appendix Afor equations). The sample layer represents the input stimuli using localist rep-
resentations of features within dimensions (i.e., the first row of 3 units represents shape, the
second row represents color, etc.). This input is mapped via a hidden layer (representing pos-
terior cortex) to an output layer, which represents the model’s answer of a single active feature
within one of the five dimensions. We tested a range of different hidden layer sizes from 16 to
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Fig. 2. Dynamic task-switching model using active PFC context representations.

50 with no noticeable changes in performance—this simple task is not particularly computa-
tionally demanding, but we have used this same basic model for a number of more complex
tasks in our current research.

The essential task that the network must perform is to select one dimension out of the five
impinging on it from the input stimulus. The PFC layer facilitates this dimensional selection
by providing top-down support or biasing (Cohen, Dunbar, & McClelland, 1990; Cohen &
O’Reilly, 1996) for a given dimension. It facilitates task switching by being able to rapidly
update to another dimensional representation, thereby providing different biases. Thus, as
in our previous task-switching models (O’Reilly & Munakata, 2000; O’Reilly et al., 2002),
the PFC does not contribute directly to the input–output mapping task, but rather contributes
by providing appropriate task-relevant biases. This contrasts with some other task-switching
models (e.g.,Dehaene & Changeux, 1991) as discussed in greater detail inO’Reilly et al.
(2002).

The PFC layer maintains an activation-based working memory representation for the current
subtask (i.e., stimulus dimension of relevance). To support this memory, and to encourage
coherent task representations instead of blends of different task representations, the PFC has
excitatory recurrent connections that enable units representing the same subtask to support
each other. As described in the next section, the updating of this layer is influenced by the
reward-based dynamic gating mechanism as implemented in the adaptive critic (AC) layer,
which acts on excitatory intracellular currents within the PFC units. Aside from these key
specializations, the PFC units are otherwise the same as all the other units in the network.

To enable exploration of “explicit” instruction in this task, we also included a task input
layer where each unit represents a different subtask (i.e., dimension). During the naming
task as described previously, this task input is uniformly activated so as to not provide any
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discriminant information about the relevant task. We have explored the interaction between
this explicit signal and the intrinsic dynamics of the PFC representations during initial learning
and subsequent task performance, but this is beyond the scope of the present paper.

3.1. The adaptive critic dynamic gating mechanism

The dynamic gating mechanism in the model is based on the idea that working memory
updating can be driven by changes in reward predictions (Braver & Cohen, 2000; O’Reilly
et al., 1999), as formalized in the temporal-differences (TD) reinforcement learning mechanism
(Sutton, 1988; Sutton & Barto, 1998). The TD algorithm employs an AC that attempts to predict
future rewards, and it drives learning as a function of differences in these predicted rewards.
The functional properties of the AC provide a good, if imperfect, fit to the firing properties of
midbrain dopamine neurons in the ventral segmental area (VTA). It has been shown that the
VTA fires dopamine bursts for stimuli that are predictive of reward (e.g.,Schultz, Apicella, &
Ljungberg, 1993), in a way that is generally consistent with the AC mechanism (Montague,
Dayan, & Sejnowski, 1996). If rewards are expected but not delivered (i.e., due to a behav-
ioral error), the dopamine neurons exhibit reduced firing, corresponding to anegative error
signal. Task-relevant information that should be maintained is a reliable predictor of reward,
and should thus elicit dopamine firing, resulting in the updating of working memory (Braver
& Cohen, 2000; O’Reilly et al., 1999), and the negative error signal should reset working mem-
ory representations. The net effect is to produce a form oftrial-and-error search by activating
and deactivating PFC representations (O’Reilly & Munakata, 2000; O’Reilly et al., 2002).

In the context of the dynamic naming task, the AC unit learns to expect reward when the
network is performing correctly, which stabilizes the PFC representations, and these expecta-
tions are disconfirmed when the task is switched and the network starts performing incorrectly,
which destabilizes the PFC representations and allows a new pattern to be activated (i.e., a
new task context). This stabilization and destabilization of PFC representations facilitates task
switching. We implemented PFC active maintenance using a combination of recurrent excita-
tory connections and intracellular ionic conductances that provide persistent excitatory input
to units that are active when the gating signal goes positive, enabling them to persist over time
(seeFrank et al., 2001for details on this mechanism).

The next sections describe some additional mechanisms that we found to be important in
improving the performance of the dynamic gating mechanism. Our full model includes these
mechanisms, and we evaluate their contributions in the simulations described later in the results
section.

3.2. The computation of reward

The computation of reward plays a critical role in the model because it drives the AC unit
behavior. The most straightforward solution would be to send the reward signal directly to
the AC unit, but this solution would cause instability within the network because of intra-task
errors. That is, the model, and actual subjects, always have a low level of background errors in
task performance due to small weight changes interacting with interactive activation dynamics
(O’Reilly, 1996). Consider the case where the model produces an intra-task error: with a
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direct reward signal, the error causes the AC unit to immediately destabilize the PFC context
representation, leading to a search among other possible subtasks. Before switching back to the
subtask the model was just in (which was in fact the right subtask), it will then produce additional
errors while trying other contexts (which are wrong at this time). The reward computation
therefore must be fault-tolerant.

We adopt a fault-tolerant solution by averaging the reward across a period ofn steps, and
setting a threshold on this average for positive versus negative reward (i.e., if the average
reward is above-threshold, a positive reward is given, otherwise a negative reward is given).
Thus, if isolated errors are produced, the average remains high and the AC unit nonetheless
gets a positive reward signal and does not induce context switching. With the consistent errors
associated with task switching, the average will go below threshold and a negative reward will
be given. Note, however, that this has a drawback in that the model has to produce more errors
before being able to switch context, degrading overall performance. The choice ofn is then a
compromise between stability and performance. We used a value of 2.

One further optimization can be made. Consider the situation when the model just switched
to a new context. This switch occurred because the model produced wrong answers, and because
we average the reward over time, we carry forward errors from the past when switching to a
new context. These errors will incorrectly penalize the new context, which should be tested
before deciding it might be the wrong one. Therefore, we reset the average reward value after it
goes below threshold and results in an actual error signal communicated to the AC unit. These
additional assumptions are important for the model’s behavior (as we demonstrate later) and
thus stand as testable predictions about how reward signals are filtered through to the midbrain
dopamine systems in the brain.

3.3. Inhibition of prior task representations

One final mechanism that we added prevents the immediate reactivation of previously active
task representations as the network searches for a new task context. This clearly makes sense
because when the task switches, the previous task context should not be considered among the
options for the new task context. The situation is analogous to the well-known inhibition of
return phenomenon in visual search, and there may indeed be a common underlying biological
mechanism of neural fatigue or synaptic depression. In the model, we used a negative bias
weight learning mechanism that rapidly builds up a negative bias weight in response to negative
changes in activation states (as when a PFC unit is deactivated). This negative bias then makes
the unit unlikely to be reactivated. It then decays steadily back toward zero to release the
inhibition over time. As we will show inSection 4, this mechanism is of a great help for
stabilizing PFC representations and acts indeed as a very short term memory of the past.

3.4. Overview of model’s task switching behavior

We can now illustrate the overall behavior of these mechanisms by considering the example
given inFig. 3. In this example, the model is currently performing the subtask of naming the
feature values along the fifth dimension, while the dimension has just been switched to the
fourth one. On the first trial following the switch and because of the context present within PFC,
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the model continues to produce its answer based on the feature active in the fifth dimension,
which now is the wrong one. Nonetheless, because of the fault tolerant mechanism we use for
computing reward, the model maintains the current context and consequently, in the second
trial, the model gives again its answer in this same fifth dimension. Having produced two
errors in a row, the average reward is below threshold and a negative reward signal is sent
to the AC unit, which destabilizes the PFC representations. This destabilization allows a new
context representation to become active within the PFC layer, which is the right one in our
example. Because this context biases the hidden layer to produce an answer in the fourth
dimension, it naturally leads to positive rewards which in turn stabilizes the PFC context layer
until the task switches again. Furthermore, it is to be noted units participating in the previous
context representation receives a negative bias activity preventing then to be immediately
reactivated.

4. Results

The objectives of the following simulations are as follows:

• To determine if useful PFC representations can develop on their own (from random initial
weights) in the context of repeatedly performing the dynamic naming task, with periodic
task switching.

• To evaluate the contribution of the PFC and dynamic gating mechanisms in our model in
comparison to other models lacking these mechanisms.

• To evaluate the importance of various features of the dynamic gating mechanism and
reward computation mechanisms as described earlier.

• To compare the performance of the intact and frontally-lesioned model to task-switching
performance in intact and frontal patients.

4.1. Development of PFC representations

The most important result is that the full model as already described can indeed learn
useful task representations from random initial weights through the process of performing the
dynamic naming task. The first line of evidence is that the network learns to solve the task
quite well in terms of asymptotic error levels (seeFig. 5, PFC data). Second, we examined
the PFC representations that developed to see if there were distinct representations for each
task context (stimulus dimension). As shown inFig. 4, the weight matrices between PFC
layer and output are clearly organized along stimulus dimension. All features within a given
dimension (i.e., each row of the output layer) share the same set of weights from the PFC
layer. Furthermore, these same set of PFC units are strongly interconnected via their reciprocal
connections. These results clearly show that the model has developed abstract representations
of stimulus dimensions in this context. These dimensional representations developed reliably
across all runs of the model, and are in fact the kinds of representations we assumed should
exist in the PFC in our earlier hand-coded models (O’Reilly & Munakata, 2000; O’Reilly et al.,
2002). We are currently leveraging this basic finding into a large-scale investigation of how
such PFC representations might facilitate flexible behavior in other kinds of task contexts.
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Fig. 4. Matrices of weights from PFC to output layer and from PFC to PFC layer. The large-scale grids represent the
layout of output units (left panel) and PFC units (right panel), with the smaller grids for each unit showing weights
from the 5×5 PFC layer. Large white squares represent very strong weights (near 1) and large black square represent
very weak weights (near 0). The output layer is organized by row into the five different stimulus dimensions—the
key finding is that each row receives the same pattern of strong weights from a subset of PFC units that thus represent
the entire dimension. The right panel shows that these same PFC units are strongly interconnected with each other.

4.2. The contribution of the dynamically gated PFC

Our next objective was to determine how important the dynamically gated PFC mechanism
is to successful task performance. We did this by comparing the performance of the full PFC
model with the following comparison models:

NoGate: A model with the identical connectivity as the full PFC model but without the AC
dynamic gating mechanism. This reveals the importance of the gating mechanism
in comparison to the full model.

NoPFC: A model lacking both the PFC and its dynamic gating mechanism—this model
must rely exclusively on weight-based learning mechanisms and thus reveals the
importance of the activation-based working memory mechanisms supported by
the PFC.

SRN: A simple recurrent network (SRN) that has a context layer updated as a copy of
the previous hidden layer activations (Elman, 1990). This provides a form of
memory functionally similar to the PFC mechanism, but it lacks the specialized
mechanisms of the dynamic gating mechanism.
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Fig. 5. Comparison of the learning performance (error count, with error defined as any unit on the wrong side of .5
for a given trial) of the full PFC model with a range of comparison models. Best possible error is 5 per epoch (one
for each task switch). Clearly, the gated PFC is critical for good task switching performance.

BP: A basic three-layer backpropagation network for comparison with the features of
the Leabra algorithm (used in all the above networks).

All models had the same number of hidden units as the standard model, and all other
parameters were the same. The BP model used cross-entropy error with an error tolerance
of .01, learning rate of .1, and no momentum. Each model was tested for 100 epochs of 250
events each. These 250 events are sequentially organized along the five possible dimensions,
that is: the hidden dimension is dimension 1 for the first 50 events, dimension 2 for events
51–100, dimension 3 for events 101–150, etc. The input stimulus was randomly generated for
each event. Thus, the best possible error level would be five errors per epoch, one for each task
switch.

The results from all of these models, and the full PFC model, are shown inFigs. 5 and 6.
These results show clearly that this task cannot be solved by standard networks like simple
recurrent networks or backpropagation networks. Even though they both appear to partially
solve the task initially, performance deteriorates over time, presumably due to a build up of
interference from repeated task switching. In the case of the BP network, we observed that it

Fig. 6. Comparison of the learning performance between all different models. Presented results are the error count
at epoch 100 averaged over 10 simulations.
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was producing a blend of the different possible output values, as has been observed previously
in cases where, as in this task, the same input leads to different outputs on different trials (e.g.,
Movellan & McClelland, 1993).

Unlike the feedforward BP network, the NoPFC Leabra model can exhibit attractor dynamics
via bidirectional connectivity (between the hidden and output layers). These attractor dynamics,
coupled with inhibitory competition in the Leabra algorithm, enable the network to more rapidly
learn to settle into different output states for the same inputs (O’Reilly & Munakata, 2000).
This explains the better performance of the NoPFC model relative to BP.

Finally, the NoGate model clearly shows that the dynamic gating mechanism is critical for
making effective use of the PFC context representations in task switching. Without it, the model
tends to develop several PFC context representations that are disconnected from the dimension
information. These representations actually impair task switching because they confuse the
network regarding the currently relevant dimension.

4.3. Contributions of additional gating mechanisms

To evaluate the contributions of the additional gating mechanisms already described, we
compared the full PFC model to PFC model variations where a specific mechanism was
disabled:

No average: The computation of reward is computed along one time step
(instead of two).

No reset: The average reward value is not reset after it goes below threshold.
No negative bias: The negative bias mechanism is disabled.

From the results presented inFig. 7, it is clear that each additional gating mechanism plays
an important role in stabilizing PFC representations, consistent with the motivations provided
when these mechanisms were introduced. Nevertheless, even with these mechanisms disabled
the network is still generally performing better than the alternative networks explored in the
previous section. Thus, these mechanisms can be considered a fine tuning of the overall gating
process.

Fig. 7. Comparison results of the full PFC model with versions having a specific additional gating mechanism
disabled. It is clear that the full set of mechanisms is necessary for optimal performance.
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Fig. 8. The frontal model has been heavily lesioned at epoch 49 resulting in an immediate degradation in performance.
There is a clear dissociation between random and perseverative errors as observed in the neuropsychological data.

4.4. Impact of lesions on perseveration

We now compare the performance of our model to the patterns of behavior seen in normal
humans and brain damaged patients. Because there is considerable variability across studies,
we will focus on the basic notion that frontal damage or immaturity (in children) leads to an
increase in perseverative errors on the WCST task (e.g.,Grant & Berg, 1948; Heaton et al.,
1993; Milner, 1963; Munakata & Yerys, 2001; Zelazo et al., 1996), instead of trying to fit the
data from any one study. A perseverative error occurs when the response is consistent with the
previous sorting rule after the sorting rule has changed. It is clear that to the extent that the
PFC facilitates rapid switching to the new rule, damage or immaturity (in children) of the PFC
should produce perseverative errors. To account for these data, we observed the type of errors
made by both an intact and a lesioned PFC model (Fig. 8). In early training (epoch 0–19), which
is analogous to early development as it involves the development of the basic representations
underlying task performance, the model is indifferently performing random and perseverative
errors. After this “developmental” period, the model produces mainly perseverative errors.
Once each task has been learned (epoch 19–49), there are still residual errors that occur at
each task switch (not shown onFig. 8). As explained before, these errors are necessary for the
model to be able to switch, and they are perseveration errors. At epoch 49, we heavily lesioned
the PFC layer (75% of units were lesioned), producing an immediate impact on performance.
Consistent with the behavioral data, almost all of the errors produced by this lesion were
perseverative.

Finally, note that the lesioned frontal model is roughly equivalent to the NoPFC model, we
introduced earlier, and yet it produces worse overall performance. This is because it has to
unlearn its prior reliance on the PFC layer, and learn to use its hidden layer in a new way. This
provides an interesting illustration of possible complications in neural reorganization following
brain damage.

4.5. Predictions

Because it embodies a number of very specific mechanisms and assumptions, our model
naturally leads to a number of testable predictions. Here, we draw out one set of particularly
interesting and perhaps counter-intuitive such predictions. The first prediction is that if one were
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able to induce performance errors in people during a given block of same-task trials, one should
be able to destabilize their PFC representations through the actions of the gating mechanism. To
test such a prediction, one would need to find a way of inducing errors in performance other than
the usual switching of the task—perhaps speeded responding and/or degraded stimuli could be
used. In addition, it would be tricky to observe the behavioral signature of this destabilization
over an above the actual behavioral errors produced by the manipulation—once the network
has switched into a given task, the weights in the non-PFC portion reinforce performance on
that task, making it less susceptible to switching to a new task. For these reasons, it might
be easier to observe this PFC destabilization effect using neuroimaging techniques. If it were
possible to observe this basic effect, then a number of other interesting predictions could be
tested, for example regarding the number of errors in a row required for destabilization, and
the effects of any inhibition of previously-active PFC representations.

5. Conclusions

We have shown that the specialized activation-based mechanisms that we hypothesize are
supported by the prefrontal cortex and associated subcortical neural systems (in this case the
ventral segmental area and its dopamine neuromodulatory outputs) can support more rapid
task switching. We demonstrated that the model is consistent with the empirical literature
showing the involvement of the prefrontal cortex in the Wisconsin card sorting task, which our
task is a simpler variant of. This model extends earlier models demonstrating similar points
(O’Reilly & Munakata, 2000; O’Reilly et al., 2002) by showing that the network can develop
its representations strictly through learning mechanisms in the process of repeatedly switching
among a set of tasks over an extended period. These advances help to establish the general
importance of these mechanisms.

The importance of having working-memory representations that can develop on their own
in response to task constraints can be highlighted by contrast with the most commonly used
models for temporally-extended tasks, the simple recurrent network (SRN) (e.g.,Elman, 1990).
In the SRN, the context representation is simply a copy of the hidden layer, and thus does not
enable the network to develop different representations in the context. In contrast, we saw that
the present model was capable of developing PFC context representations that abstracted out
the notion of a stimulus dimension, because such an abstraction was critical for task switching
performance. The hidden layer did not develop such an abstraction because it needs to produce
a specific input–output mapping at the level of stimulus features, not dimensions. We think
that this example may be representative of general distinctions between posterior cortex and
PFC representations (i.e., posterior is more embedded and diffuse while PFC is more discrete
and systematic), and that this may have important implications for understanding the unique
contributions that the PFC makes in human cognition. We are currently exploring this possibility
using the present model on a range of other tasks.
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Appendix A. Implementational details

The model was implemented using the Leabra framework, which is described in detail
in O’Reilly and Munakata (2000), and summarized here. This framework has been used to
simulate over 40 different models inO’Reilly and Munakata (2000), and a number of other
research models. Thus, the model can be viewed as an instantiation of a systematic modeling
framework using standardized mechanisms, instead of constructing new mechanisms for each
model. The model can be obtained by e-mail at oreilly@psych.colorado.edu.

A.1. Pseudocode

The pseudocode for Leabra is given here, showing exactly how the pieces of the algorithm
described in more detail in the subsequent sections fit together.

A.1.1. Outer loop
Iterate over events (trials) within an epoch. For each event:

1. Iterate over minus and plus phases of settling for each event.
(a) At start of settling, for all units:

i. Initialize all state variables (activation, vm, etc.).
ii. Apply external patterns (clamp input in minus, input and output in plus).

(b) During each cycle of settling, for all non-clamped units:
i. Compute excitatory net input (ge(t) or ηj , Eq. (A.2)).

ii. Compute kWTA (k-Winners-Take-All) inhibition for each layer, based ongΘ ;i

(Eq. (A.6)):
A. Sort units into two groups based ongΘ ;i : top k and remainingk + 1 to n.
B. If basic, findk andk + 1th highest; if average-based, compute average of

1 → k andk + 1 → n.
C. Set inhibitory conductancegi from gΘ ;k andgΘ;k+1 (Eq. (A.5)).

iii. Compute point-neuron activation combining excitatory input and inhibition
(Eq. (A.1)).

(c) After settling, for all units:
i. Record final settling activations as either minus or plus phase (y−;j or y+;j ).

2. After both phases update the weights (based on linear current weight values), for all
connections:
(a) Compute error-driven weight changes (Eq. (A.8)) with soft weight bounding

(Eq. (A.9)).
(b) Compute Hebbian weight changes from plus-phase activations (Eq. (A.7)).
(c) Compute net weight change as weighted sum of error-driven and Hebbian (Eq. (A.10)).
(d) Increment the weights according to net weight change.

A.2. Point neuron activation function

Leabra uses apoint neuron activation function that models the electrophysiological prop-
erties of real neurons, while simplifying their geometry to a single point. This function is
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nearly as simple computationally as the standard sigmoidal activation function, but the more
biologically-based implementation makes it considerably easier to model inhibitory compe-
tition, as described. Further, using this function enables cognitive models to be more easily
related to more physiologically detailed simulations, thereby facilitating bridge-building be-
tween biology and cognition.

The membrane potentialVm is updated as a function of ionic conductancesg with reversal
(driving) potentialsE as follows:


Vm(t) = τ
∑
c

gc(t)ḡc(Ec − Vm(t)) (A.1)

with three channels (c) corresponding toe, the excitatory input;l leak current; andi inhibitory
input. Following electrophysiological convention, the overall conductance is decomposed into
a time-varying componentgc(t) computed as a function of the dynamic state of the network,
and a constantgc that controls the relative influence of the different conductances.

The excitatory net input/conductancege(t) or ηj is computed as the proportion of open
excitatory channels as a function of sending activations times the weight values:

ηj = ge(t) = 〈xiwij〉 = 1

n

∑
i

xiwij (A.2)

The inhibitory conductance is computed via the kWTA function described in the next section,
and leak is a constant.

Activation communicated to other cells (yj ) is a threshold (Θ) sigmoidal function of the
membrane potential with gain parameterγ :

yj (t) = 1

1 + 1/(γ [Vm(t)−Θ]+)
(A.3)

where [x]+ is a threshold function that returns 0 ifx < 0 andx if X > 0. Note that if it returns 0,
we assumeyj (t) = 0, to avoid dividing by 0. As it is, this function has a very sharp threshold,
which interferes with graded learning mechanisms (e.g., gradient descent). To produce a less
discontinuous deterministic function with a softer threshold, the function is convolved with
a Gaussian noise kernel (µ = 0, σ = .005), which reflects the intrinsic processing noise of
biological neurons:

y∗
j (x) =

∫ +∞

−∞

1√
2Πσ

e−z2/2σ 2
yj (z− x)dz (A.4)

wherex represents the [Vm(t)−Θ]+ value, andy∗;j (x) is the noise-convolved activation for
that value. In the simulation, this function is implemented using a numerical lookup table.

A.3. k-Winners-Take-All inhibition

Leabra uses a kWTA function to achieve inhibitory competition among units within a layer
(area). The kWTA function computes a uniform level of inhibitory current for all units in the
layer, such that thek+1th most excited unit within a layer is below its firing threshold, while the
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kth is above threshold. Activation dynamics similar to those produced by the kWTA function
have been shown to result from simulated inhibitory interneurons that project both feedforward
and feedback inhibition (O’Reilly & Munakata, 2000). Thus, although the kWTA function is
somewhat biologically implausible in its implementation (e.g., requiring global information
about activation states and using sorting mechanisms), it provides a computationally effective
approximation to biologically plausible inhibitory dynamics.

kWTA is computed via a uniform level of inhibitory current for all units in the layer as
follows:

gi = gΘk+1 + q(gΘk − gΘk+1) (A.5)

where 0< q < 1 (.25 default used here) is a parameter for setting the inhibition between
the upper bound ofgΘ;k and the lower bound ofgΘ;k+1. These boundary inhibition values are
computed as a function of the level of inhibition necessary to keep a unit right at threshold:

gΘi = g∗
e ḡ(Ee −Θ)+ glḡl(El −Θ)

Θ − Ei (A.6)

whereg∗;e is the excitatory net input without the bias weight contribution—this allows the bias
weights to override the kWTA constraint.

A.4. Hebbian and error-driven learning

For learning, Leabra uses a combination of error-driven and Hebbian learning. The error-
driven component is the symmetric midpoint version of the GeneRec algorithm (O’Reilly,
1996), which is functionally equivalent to the deterministic Boltzmann machine and contrastive
Hebbian learning (CHL). The network settles in two phases, an expectation (minus) phase
where the network’s actual output is produced, and an outcome (plus) phase where the target
output is experienced, and then computes a simple difference of a pre- and post-synaptic
activation product across these two phases. For Hebbian learning, Leabra uses essentially the
same learning rule used in competitive learning or mixtures-of-Gaussians which can be seen
as a variant of the Oja normalization. The error-driven and Hebbian learning components are
combined additively at each connection to produce a net weight change.

The equation for the Hebbian weight change is:

∆hebbwij = x+
i y

+
j − y+

j wij = y+
j (x

+
i − wij) (A.7)

and for error-driven learning using CHL:

∆errwij = (x+
i y

+
j )− (x−

i y
−
j ) (A.8)

which is subject to a soft-weight bounding to keep within the 01 range:

∆sberrwij = [∆err]+(1 − wij)+ [∆err]−wij (A.9)

The two terms are then combined additively with a normalized mixing constantkhebb:

∆wij = ε[khebb(∆hebb)+ (1 − khebb)(∆sberr)] (A.10)
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A.5. Temporal differences and adaptive critic gating mechanisms

To implement the temporal differences (TD) algorithm in Leabra, the AC unit in the VTA
layer has plus–minus phase states that correspond to the expected reward at the previous
time step (minus) and the current time step (plus). The difference between these two states
is the TD errorδ, which is essentially equivalent to the more standard kinds of error signals
computed by the error-driven learning component of Leabra, except that it represents an error
of prediction over time, instead of an instantaneous error in the network output. Thisδ value
then modulates the strength of an excitatory ionic current (labeledm here) that helps to maintain
PFC activations:

gm(t − 1) = 0, if |δ(t)| > r (A.11)

gm(tj ) = gm(t − 1)+ δ(t)yj (t) (A.12)

Thus, a positiveδ increases this maintenance current for active units, and a negativeδ decreases
it. Furthermore, ifδ is sufficiently large in magnitude (greater than the reset thresholdr), it
resets any existing currents.
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