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The prefrontal cortex has long been thought to subserve both working
memory (the holding of information online for processing) and executive
functions (deciding how to manipulate working memory and perform
processing). Although many computational models of working memory
have been developed, the mechanistic basis of executive function
remains elusive, often amounting to a homunculus. This article presents
an attempt to deconstruct this homunculus through powerful learning
mechanisms that allow a computational model of the prefrontal cortex to
control both itself and other brain areas in a strategic, task-appropriate
manner. These learning mechanisms are based on subcortical structures
in the midbrain, basal ganglia, and amygdala, which together form
an actor-critic architecture. The critic system learns which prefrontal
representations are task relevant and trains the actor, which in turn
provides a dynamic gating mechanism for controlling working memory
updating. Computationally, the learning mechanism is designed to
simultaneously solve the temporal and structural credit assignment
problems. The model’s performance compares favorably with standard
backpropagation-based temporal learning mechanisms on the chal-
lenging 1-2-AX working memory task and other benchmark working
memory tasks.

1 Introduction

This letter presents a computational model of working memory based on
the prefrontal cortex and basal ganglia (the PBWM model). The model
represents a convergence of two logically separable but synergistic goals:
understanding the complex interactions between the basal ganglia (BG)
and prefrontal cortex (PFC) in working memory function and developing
a computationally powerful model of working memory that can learn to
perform complex temporally extended tasks. Such tasks require learning
which information to maintain over time (and what to forget) and how to
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assign credit or blame to events based on their temporally delayed con-
sequences. The model shows how the prefrontal cortex and basal ganglia
can interact to solve these problems by implementing a flexible working
memory system with an adaptive gating mechanism. This mechanism can
switch between rapid updating of new information into working memory
and robust maintenance of existing information already being maintained
(Hochreiter & Schmidhuber, 1997; O’Reilly, Braver, & Cohen, 1999; Braver &
Cohen, 2000; Cohen, Braver, & O’Reilly, 1996; O’Reilly & Munakata, 2000).
It is trained in the model using a version of reinforcement learning mech-
anisms that are widely thought to be supported by the basal ganglia (e.g.,
Sutton, 1988; Sutton & Barto, 1998; Schultz et al., 1995; Houk, Adams, &
Barto, 1995; Schultz, Dayan, & Montague, 1997; Suri, Bargas, & Arbib, 2001;
Contreras-Vidal & Schultz, 1999; Joel, Niv, & Ruppin, 2002).

At the biological level of analysis, the PBWM model builds on existing
work describing the division of labor between prefrontal cortex and basal
ganglia (Frank, Loughry, & O’Reilly, 2001; Frank, 2005). In this prior work,
we demonstrated that the basal ganglia can perform dynamic gating via
the modulatory mechanism of disinhibition, allowing only task-relevant
information to be maintained in PFC and preventing distracting informa-
tion from interfering with task demands. The mechanisms for support-
ing such functions are analogous to the basal ganglia role in modulating
more primitive frontal system (e.g., facilitating adaptive motor responses
while suppressing others; Mink, 1996). However, to date, no model has
attempted to address the more difficult question of how the BG “knows”
what information is task relevant (which was hard-wired in prior models).
The present model learns this dynamic gating functionality in an adap-
tive manner via reinforcement learning mechanisms thought to depend
on the dopaminergic system and associated areas (e.g., nucleus accum-
bens, basal-lateral amygdala, midbrain dopamine nuclei). In addition, the
prefrontal cortex representations themselves learn using both Hebbian and
error-driven learning mechanisms as incorporated into the Leabra model of
cortical learning, which combines a number of well-accepted mechanisms
into one coherent framework (O’Reilly, 1998; O’Reilly & Munakata, 2000).

At the computational level, the model is most closely related to the long
short-term memory (LSTM) model (Hochreiter & Schmidhuber, 1997; Gers,
Schmidhuber, & Cummins, 2000), which uses error backpropagation to train
dynamic gating signals. The impressive learning ability of the LSTM model
compared to other approaches to temporal learning that lack dynamic gat-
ing argues for the importance of this kind of mechanism. However, it is
somewhat difficult to see how LSTM itself could actually be implemented
in the brain. The PBWM model shows how similarly powerful levels of com-
putational learning performance can be achieved using more biologically
based mechanisms. This model has direct implications for understanding
executive dysfunction in neurological disorders such as attention deficit–
hyperactivity disorder (ADHD) and Parkinson’s disease, which involve the
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interaction between dopamine, basal ganglia, and prefrontal cortex (Frank,
Seeberger, & O’Reilly, 2004; Frank, 2005).

After presenting the PBWM model and its computational, biological,
and cognitive bases, we compare its performance with that of several other
standard temporal learning models including LSTM, a simple recurrent
network (SRN; Elman, 1990; Jordan, 1986), and real-time recurrent back-
propagation learning (RBP; Robinson & Fallside, 1987; Schmidhuber, 1992;
Williams & Zipser, 1992).

2 Working Memory Functional Demands and Adaptive Gating

The need for an adaptive gating mechanism can be motivated by the 1-2-AX
task (see Figure 1; Frank et al., 2001), which is a complex working memory
task involving both goals and subgoals and is used as a test case later in
the article. Number and letter stimuli (1,2,A,X,B,Y) appear one at a time in
sequence, and the participant is asked to detect one of two target sequences,
depending on whether he or she last saw a 1 or a 2 (which thus serves as
“task” stimuli). In the 1 task, the target is A followed by X, and for 2, it is B-Y.
Thus, the task demand stimuli define an outer loop of active maintenance
(maintenance of task demands) within which there can be a number of inner
loops of active maintenance for the A-X level sequences. This task imposes
three critical functional demands on the working memory system:

Rapid updating: As each stimulus comes in, it must be rapidly encoded in
working memory.
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Figure 1: The 1-2-AX task. Stimuli are presented one at a time in a sequence.
The participant responds by pressing the right key (R) to the target sequence;
otherwise, a left key (L) is pressed. If the subject last saw a 1, then the target
sequence is an A followed by an X. If a 2 was last seen, then the target is a B
followed by a Y. Distractor stimuli (e.g., 3, C, Z) may be presented at any point
and are to be ignored. The maintenance of the task stimuli (1 or 2) constitutes
a temporal outer loop around multiple inner-loop memory updates required to
detect the target sequence.
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Figure 2: Illustration of active gating. When the gate is open, sensory input can
rapidly update working memory (e.g., encoding the cue item A in the 1-2-AX
task), but when it is closed, it cannot, thereby preventing other distracting infor-
mation (e.g., distractor C) from interfering with the maintenance of previously
stored information.

Robust maintenance: The task demand stimuli (1 or 2) in the outer loop
must be maintained in the face of interference from ongoing processing
of inner-loop stimuli and irrelevant distractors.

Selective updating: Only some elements of working memory should be
updated at any given time, while others are maintained. For example,
in the inner-loop, A’s and X’s should be updated while the task demand
stimulus (1 or 2) is maintained.

The first two of these functional demands (rapid updating and robust
maintenance) are directly in conflict with each other when viewed in terms
of standard neural processing mechanisms, and thus motivate the need for
a dynamic gating mechanism to switch between these modes of operation
(see Figure 2; Cohen et al., 1996; Braver & Cohen, 2000; O’Reilly et al.,
1999; O’Reilly & Munakata, 2000; Frank et al., 2001). When the gate is open,
working memory is updated by incoming stimulus information; when it
is closed, currently active working memory representations are robustly
maintained.

2.1 Dynamic Gating via Basal Ganglia Disinhibition. One of the cen-
tral postulates of the PBWM model is that the basal ganglia provide a selec-
tive dynamic gating mechanism for information maintained via sustained
activation in the PFC (see Figure 3). As reviewed in Frank et al. (2001), this
idea is consistent with a wide range of data and other computational models
that have been developed largely in the domain of motor control, but also
in working memory (Wickens, 1993; Houk & Wise, 1995; Wickens, Kotter,
& Alexander, 1995; Dominey, Arbib, & Joseph, 1995; Berns & Sejnowski,
1995, 1998; Jackson & Houghton, 1995; Beiser & Houk, 1998; Kropotov &
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Figure 3: The basal ganglia are interconnected with frontal cortex through a
series of parallel loops, each of the form shown. Working backward from the
thalamus, which is bidirectionally excitatory with frontal cortex, the SNr (sub-
stantia nigra pars reticulata) is tonically active and inhibiting this excitatory cir-
cuit. When direct pathway “Go” neurons in dorsal striatum fire, they inhibit the
SNr, and thus disinhibit frontal cortex, producing a gating-like modulation that
we argue triggers the update of working memory representations in prefrontal
cortex. The indirect pathway “NoGo” neurons of dorsal striatum counteract
this effect by inhibiting the inhibitory GPe (globus pallidus, external segment).

Etlinger, 1999; Amos, 2000; Nakahara, Doya, & Hikosaka, 2001). Specifically,
in the motor domain, various authors suggest that the BG are specialized
to selectively facilitate adaptive motor actions, while suppressing others
(Mink, 1996). This same functionality may hold for more advanced tasks,
in which the “action” to facilitate is the updating of prefrontal working
memory representations (Frank et al., 2001; Frank, 2005). To support robust
active maintenance in PFC, our model takes advantage of intrinsic bistabil-
ity of PFC neurons, in addition to recurrent excitatory connections (Fellous,
Wang, & Lisman, 1998; Wang, 1999; Durstewitz, Kelc, & Gunturkun, 1999;
Durstewitz, Seamans, & Sejnowski, 2000a).

Here we present a summary of our previously developed framework
(Frank et al., 2001) for how the BG achieves gating:

� Rapid updating occurs when direct pathway spiny “Go” neurons in
the dorsal striatum fire. Go firing directly inhibits the substantia nigra



288 R. O’Reilly and M. Frank

pars reticulata (SNr) and releases its tonic inhibition of the thalamus.
This thalamic disinhibition enables, but does not directly cause (i.e.,
gates), a loop of excitation into the PFC. The effect of this excitation in
the model is to toggle the state of bistable currents in the PFC neurons.
Striatal Go neurons in the direct pathway are in competition (in the
SNr, if not the striatum; Mink, 1996; Wickens, 1993) with “NoGo” neu-
rons in the indirect pathway that effectively produce more inhibition
of thalamic neurons and therefore prevent gating.

� Robust maintenance occurs via intrinsic PFC mechanisms (bistability,
recurrence) in the absence of Go updating signals. This is supported by
the NoGo indirect pathway firing to prevent updating of extraneous
information during maintenance.

� Selective updating occurs because there are parallel loops of connec-
tivity through different areas of the basal ganglia and frontal cortex
(Alexander, DeLong, & Strick, 1986; Graybiel & Kimura, 1995; Middle-
ton & Strick, 2000). We refer to the separately updatable components
of the PFC/BG system as stripes, in reference to relatively isolated
groups of interconnected neurons in PFC (Levitt, Lewis, Yoshioka, &
Lund, 1993; Pucak, Levitt, Lund, & Lewis, 1996). We previously es-
timated that the human frontal cortex could support roughly 20,000
such stripes (Frank et al., 2001).

3 Learning When to Gate in the Basal Ganglia

Figure 4 provides a summary of how basal ganglia gating can solve the
1-2-AX task. This figure also illustrates that the learning problem in the
basal ganglia amounts to learning when to fire a Go versus NoGo signal
in a given stripe based on the current sensory input and maintained PFC
activations. Without such a learning mechanism, our model would require
some kind of intelligent homunculus to control gating. Thus, the develop-
ment of this learning mechanism is a key step in banishing the homunculus
from the domain of working memory models (cf. the “central executive” of
Baddeley’s, 1986, model). There are two fundamental problems that must
be solved by the learning mechanism:

Temporal credit assignment: The benefits of having encoded a given piece
of information into prefrontal working memory are typically available
only later in time (e.g., encoding the 1 task demand helps later only when
confronted with an A-X sequence). Thus, the problem is to know which
prior events were critical for subsequent good (or bad) performance.

Structural credit assignment: The network must decide which PFC stripes
should encode which different pieces of information at a given time.
When successful performance occurs, it must reinforce those stripes that



Making Working Memory Work 289

{

1 1

{

C 1

{

A 1A

{

X 1AR

a) b)

c) d)

C

SNr

Striatum Go

Thal

PFCStim

Figure 4: Illustration of how the basal ganglia gating of different PFC stripes
can solve the 1-2-AX task (light color = active; dark = not active). (a) The
1 task is gated into an anterior PFC stripe because a corresponding striatal
stripe fired Go. (b) The distractor C fails to fire striatial Go neurons, so it will
not be maintained; however, it does elicit transient PFC activity. Note that the
1 persists because of gating-induced robust maintenance. (c) The A is gated in.
(d) A right key press motor action is activated (using the same BG-mediated
disinhibition mechanism) based on X input plus maintained PFC context.

actually contributed to this success. This form of credit assignment is
what neural network models are typically very good at doing, but clearly
this form of structural credit assignment interacts with the temporal
credit assignment problem, making it more complex.

The PBWM model uses a reinforcement-learning algorithm called PVLV
(in reference to its Pavlovian learning mechanisms; O’Reilly, Frank, Hazy,
& Watz, 2005) to solve the temporal credit assignment problem. The simu-
lated dopaminergic (DA) output of this PVLV system modulates Go versus
NoGo firing activity in a stripe-wise manner in BG-PFC circuits to facili-
tate structural credit assignment. Each of these is described in detail below.
The model (see Figure 5) has an actor-critic structure (Sutton & Barto, 1998),
where the critic is the PVLV system that controls the firing of simulated mid-
brain DA neurons and trains both itself and the actor. The actor is the basal
ganglia gating system, composed of the Go and NoGo pathways in the dor-
sal striatum and their associated projections through BG output structures
to the thalamus, and then back up to the PFC. The DA signals computed
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Figure 5: Overall architecture of the PBWM model. Sensory inputs are mapped
to motor outputs via posterior cortical (“hidden”) layers, as in a standard neural
network model. The PFC contextualizes this mapping by representing relevant
prior information and goals. The basal ganglia (BG) update the PFC represen-
tations via dynamic gating, and the PVLV system drives dopaminergic (DA)
modulation of the BG so it can learn when to update. The BG/PVLV system
constitutes an actor-critic architecture, where the BG performs updating actions
and the PVLV system “critiques” the potential reward value of these actions,
with the resulting modulation shaping future actions to be more rewarding.

by PVLV drive both performance and learning effects via opposite effects
on Go and NoGo neurons (Frank, 2005). Specifically, DA is excitatory onto
the Go neurons via D1 receptors and inhibitory onto NoGo neurons via
D2 receptors (Gerfen, 2000; Hernandez-Lopez et al., 2000). Thus, positive
DA bursts (above tonic level firing) tend to increase Go firing and decrease
NoGo firing, while dips in DA firing (below tonic levels) have the opposite
effect. The change in activation state as a result of this DA modulation can
then drive learning in an appropriate way, as detailed below and in Frank
(2005).

3.1 Temporal Credit Assignment: The PVLV Algorithm. The firing
patterns of midbrain dopamine (DA) neurons (ventral tegmental area, VTA,
and substantia nigra pars compacta, SNc; both strongly innervated by the
basal ganglia) exhibit the properties necessary to solve the temporal credit
assignment problem because they appear to learn to fire for stimuli that pre-
dict subsequent rewards (e.g., Schultz, Apicella, & Ljungberg, 1993; Schultz,
1998). This property is illustrated in schematic form in Figure 6a for a simple
Pavlovian conditioning paradigm, where a conditioned stimulus (CS, e.g.,
a tone) predicts a subsequent unconditioned stimulus (US, i.e., a reward).
Figure 6b shows how this predictive DA firing can reinforce BG Go firing to
maintain a stimulus, when such maintenance leads to subsequent reward.
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Figure 6: (a) Schematic of dopamine (DA) neural firing for a conditioned stimu-
lus (CS, e.g., a tone) that reliably predicts a subsequent unconditioned stimulus
(US, i.e., a reward, r). Initially, DA fires at the point of reward, but then over re-
peated trials learns to fire at the onset of the stimulus. (b) This DA firing pattern
can solve the temporal credit assignment problem for PFC active maintenance.
Here, the PFC maintains the transient input stimulus (initially by chance), lead-
ing to reward. As the DA system learns, it begins to fire DA bursts at stimulus
onset, by virtue of PFC “bridging the gap” (in place of a sustained input). DA
firing at stimulus onset reinforces the firing of basal ganglia Go neurons, which
drive updating in PFC.

Specifically, the DA firing can move from the time of a reward to the onset
of a stimulus that, if maintained in the PFC, leads to this subsequent re-
ward. Because this DA firing occurs when the stimulus comes on, it is well
timed to facilitate the storage of this stimulus in PFC. In the model, this
occurs by reinforcing the connections between the stimulus and the Go gat-
ing neurons in the striatum, which then cause updating of PFC to maintain
the stimulus. Note that other models have leveraged this same logic, but
have the DA firing itself cause updating of working memory via direct DA
projections to PFC (O’Reilly et al., 1999; Braver & Cohen, 2000; Cohen et al.,
1996; O’Reilly & Munakata, 2000; Rougier & O‘Reilly, 2002; O’Reilly, Noelle,
Braver, & Cohen, 2002). The disadvantage of this global DA signal is that it
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would update the entire PFC every time, making it difficult to perform tasks
like the 1-2-AX task, which require maintenance of some representations
while updating others.

The apparently predictive nature of the DA firing has almost universally
been explained in terms of the temporal differences (TD) reinforcement
learning mechanism (Sutton, 1988; Sutton & Barto, 1998; Schultz et al., 1995;
Houk et al., 1995; Montague, Dayan, & Sejnowski, 1996; Suri et al., 2001;
Contreras-Vidal & Schultz, 1999; Joel et al., 2002). The earlier DA gating
models cited above and an earlier version of the PBWM model (O’Reilly &
Frank, 2003) also used this TD mechanism to capture the essential properties
of DA firing in the BG. However, considerable subsequent exploration and
analysis of these models has led us to develop a non-TD based account
of these DA firing patterns, which abandons the prediction framework on
which it is based (O’Reilly et al., 2005). In brief, TD learning depends on
sequential chaining of predictions from one time step to the next, and any
weak link (i.e., unpredictable event) can break this chain. In many of the
tasks faced by our models (e.g., the 1-2-AX task), the sequence of stimulus
states is almost completely unpredictable, and this significantly disrupts
the TD chaining mechanism, as shown in O’Reilly et al. (2005).

Instead of relying on prediction as the engine of learning, we have
developed a fundamentally associative “Pavlovian” learning mechanism
called PVLV, which consists of two systems: primary value (PV) and learned
value (LV) (O’Reilly et al., 2005; see Figure 7). The PV system is just the

Figure 7: PVLV learning mechanism. (a) Structure of PVLV. The PV (primary
value) system learns about primary rewards and contains two subsystems: the
excitatory (PVe) drives excitatory DA bursts from primary rewards (US = un-
conditioned stimulus), and the inhibitory (PVi) learns to cancel these bursts
(using timing or other reliable signals). Anatomically, the PVe corresponds to
the lateral hypothalamus (LHA), which has excitatory projections to the mid-
brain DA nuclei and responds to primary rewards. The PVi corresponds to the
striosome-patch neurons in the ventral striatum (V. Str.), which have direct in-
hibitory projections onto the DA system, and learn to fire at the time of expected
rewards. The LV (learned value) system learns to fire for conditioned stimuli
(CS) that are reliably associated with reward. The excitatory component (LVe)
drives DA bursting and corresponds to the central nucleus of the amygdala
(CNA), which has excitatory DA projections and learns to respond to CS’s. The
inhibitory component (LVi) is just like the PVi, except it inhibits CS-associated
bursts. (b) Application to the simple conditioning paradigm depicted in the
previous figure, where the PVi learns (based on the PVe reward value at each
time step) to cancel the DA burst at the time of reward, while the LVe learns a
positive CS association (only at the time of reward) and drives DA bursts at CS
onset. The phasic nature of CS firing, despite a sustained CS input, requires a
novelty detection mechanism of some form; we suggest a synaptic depression
mechanism as having beneficial computational properties.



Making Working Memory Work 293

excitatory
inhibitory

LV i

Timing

CS

DA

PV i

eLV ePV

US

(cereb.)

(CNA) (LHA)

(V. Str.) (V. Str.)

(VTA/SNc)

CS

b)

a)

Timing

DA

PV i

LVe

US/PVe



294 R. O’Reilly and M. Frank

Rescorla-Wagner/delta-rule learning algorithm (Rescorla & Wagner,
1972; Widrow & Hoff, 1960), trained by the primary reward value r t (i.e.,
the US) at each time step t (where time steps correspond to discrete events
in the environment, such as the presentation of a CS or US). For simplicity,
consider a single linear unit that computes an expected reward value
V̂t

pv based on weights wt
i coming from sensory and other inputs xt

i (e.g.,
including timing signals from the cerebellum):

V̂t
pv =

∑
i

xt
i w

t
i (3.1)

(our actual value representation uses a distributed representation, as de-
scribed in the appendix). The error in this expected reward value relative to
the actual reward present at time t represents the PV system’s contribution
to the overall DA signal:

δt
pv = r t − V̂t

pv. (3.2)

Note that all of these terms are in the current time step, whereas the similar
equation in TD involves terms across different adjacent time steps. This
delta value then trains the weights into the PV reward expectation,

�wt
i = εδt

pvxt
i , (3.3)

where �wt
i is the change in weight value and 0 < ε < 1 is a learning rate.

As the system learns to expect primary rewards based on sensory and other
inputs, the delta value decreases. This can account for the cancellation of the
dopamine burst at the time of reward, as observed in the neural recording
data (see Figure 7b).

When a conditioned stimulus is activated in advance of a primary re-
ward, the PV system is actually trained to not expect reward at this time,
because it is always trained by the current primary reward value, which is
zero in this case. Therefore, we need an additional mechanism to account
for the anticipatory DA bursting at CS onset, which in turn is critical for
training up the BG gating system (see Figure 6). This is the learned value
(LV) system, which is trained only when primary rewards are either present
or expected by the PV and is free to fire at other times without adapting its
weights. Therefore, the LV is protected from having to learn that no primary
reward is actually present at CS onset, because it is not trained at that time.
In other words, the LV system is free to signal reward associations for stim-
uli even at times when no primary reward is actually expected. This results
in the anticipatory dopamine spiking at CS onset (see Figure 7b), without
requiring an unbroken chain of predictive events between stimulus onset
and subsequent reward, as in TD. Thus, this anticipatory dopamine spiking
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by the LV system is really just signaling a reward association, not a reward
prediction.

As detailed in O’Reilly et al. (2005), this PV/LV division provides a good
mapping onto the biology of the DA system (see Figure 7a). Excitatory pro-
jections from the lateral hypothalamus (LHA) and central nucleus of the
amygdala (CNA) are known to drive DA bursts in response to primary
rewards (LHA) and conditioned stimuli (CNA) (e.g., Cardinal, Parkinson,
Hall, & Everitt, 2002). Thus, we consider LHA to represent r , which we also
label as PVe to denote the excitatory component of the primary value sys-
tem. The CNA corresponds to the excitatory component of the LV system
described above (LVe), which learns to drive DA bursts in response to con-
ditioned stimuli. The primary reward system V̂pv that cancels DA firing at
reward delivery is associated with the striosome/patch neurons in the ven-
tral striatum, which have direct inhibitory projections into the DA system
(e.g., Joel & Weiner, 2000), and learn to fire at the time of expected primary
rewards (e.g., Schultz, Apicella, Scarnati, & Ljungberg, 1992). We refer to
this as the inhibitory part of the primary value system, PVi. For symmetry
and important functional reasons described later, we also include a similar
inhibitory component to the LV system, LVi, which is also associated with
the same ventral striatum neurons, but slowly learns to cancel DA bursts
associated with CS onset. (For full details on PVLV, see O’Reilly et al., 2005,
and the equations in the appendix.)

3.2 Structural Credit Assignment. The PVLV mechanism just described
provides a solution to the temporal credit assignment problem, and we use
the overall PVLV δ value to simulate midbrain (VTA, SNc) dopamine neu-
ron firing rates (deviations from baseline). To provide a solution to the
structural credit assignment problem, the global PVLV DA signal can be
modulated by the Go versus NoGo firing of the different PFC/BG stripes,
so that each stripe gets a differentiated DA signal that reflects its contribu-
tion to the overall reward signal. Specifically, we hypothesize that the SNc
provides a more stripe-specific DA signal by virtue of inhibitory projections
from the SNr to the SNc (e.g., Joel & Weiner, 2000). As noted above, these
SNr neurons are tonically active and are inhibited by the firing of Go neu-
rons in the striatum. Thus, to the extent that a stripe fires a strong Go signal,
it will disinhibit the SNc DA projection to itself, while those that are firing
NoGo will remain inhibited and not receive DA signals. We suggest that
this inhibitory projection from SNr to SNc produces a shunting property
that negates the synaptic inputs that produce bursts and dips, while pre-
serving the intrinsically generated tonic DA firing levels. Mathematically,
this results in a multiplicative relationship, such that the degree of Go firing
multiplies the magnitude of the DA signal it receives (see the appendix for
details).

It remains to be determined whether the SNc projections support
stripe-specific topography (see Haber, Fudge, & McFarland, 2000, for data
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suggestive of some level of topography), but it is important to emphasize
that the proposed mechanism involves only a modulation in the amplitude
of phasic DA changes in a given stripe and not qualitatively different firing
patterns from different SNc neurons. Thus, very careful quantitative paral-
lel DA recording studies across multiple stripes would be required to test
this idea. Furthermore, it is possible that this modulation could be achieved
through other mechanisms operating in the synaptic terminals regulating
DA release (Joel & Weiner, 2000), in addition to or instead of overall firing
rates of SNc neurons. What is clear from the results presented below is that
the networks are significantly impaired at learning without this credit as-
signment mechanism, so we feel it is likely to be implemented in the brain
in some manner.

3.3 Dynamics of Updating and Learning. In addition to solving the
temporal and structural credit assignment problems, the PBWM model
depends critically on the temporal dynamics of activation updating to solve
the following functional demands:

� Within one stimulus-response time step, the PFC must provide a stable
context representation reflecting ongoing goals or prior stimulus con-
text, and it must also be able to update to reflect appropriate changes
in context for subsequent processing. Therefore, the system must be
able to process the current input and make an appropriate response
before the PFC is allowed to update. This offset updating of context
representations is also critical for the SRN network, as discussed later.

In standard Leabra, there are two phases of activation updating:
a minus phase where a stimulus is processed to produce a response,
followed by a plus phase where any feedback (when available) is pre-
sented, allowing the network to correct its response next time. Both of
these phases must occur with a stable PFC context representation for
the feedback to be able to drive learning appropriately. Furthermore,
the BG Go/NoGo firing to decide whether to update the current PFC
representations must also be appropriately contextualized by these
stable PFC context representations. Therefore, in PBWM, we add a
third update phase where PFC representations update, based on BG
Go/NoGo firing that was computed in the plus phase (with the prior
PFC context active). Biologically, this would occur in a more contin-
uous fashion, but with appropriate delays such that PFC updating
occurs after motor responding.

� The PVLV system must learn about the value of maintaining a given
PFC representation at the time an output response is made and re-
warded (or not). This reward learning is based on adapting synaptic
weights from PFC representations active at the time of reward, not
based on any transient sensory inputs that initially activated those
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PFC representations, which could have been many time steps earlier
(and long since gone).

� After BG Go firing updates PFC representations (during the third
phase of settling), the PVLV critic can then evaluate the value of the
new PFC state to provide a training signal to Go/NoGo units in the
striatum. This training signal is directly contingent on striatal actions:
Did the update result in a “good” (as determined by PVLV associa-
tions) PFC state? If good (DA burst), then increase the likelihood of Go
firing next time. If bad (DA dip), then decrease the Go firing likelihood
and increase NoGo firing. This occurs via direct DA modulation of the
Go/NoGo neurons in the third phase, where bursts increase Go and
decrease NoGo activations and dips have the opposite effect (Frank,
2005). Thus, the Go/NoGo units learn using the delta rule over their
states in the second and third phases of settling, where the third phase
reflects the DA modulation from the PVLV evaluation of the new PFC
state.

To summarize, the temporal credit assignment “time travel” of perceived
value, from the point of reward back to the critical stimuli that must be
maintained, must be based strictly on PFC states and not sensory inputs.
But this creates a catch-22 because these PFC states reflect inputs only after
updating has occurred (O’Reilly & Munakata, 2000), so the system cannot
know that it would be good to update PFC to represent current inputs
until it has already done so. This is solved in PBWM by having one system
(PVLV) for solving the temporal credit assignment problem (based on PFC
states) and a different one (striatum) for deciding when to update PFC
(based on current sensory inputs and prior PFC context). The PVLV system
then evaluates the striatal updating actions after updating has occurred.
This amounts to trial-and-error learning, with the PVLV system providing
immediate feedback for striatal gating actions (and this feedback is in turn
based on prior learning by the PVLV system, taking place at the time of
primary rewards). The system, like most reinforcement learning systems,
requires sufficient exploration of different gating actions to find those that
are useful.

The essential logic of these dynamics in the PBWM model is illustrated
in Figure 8 in the context of a simple “store ignore recall” (SIR) working
memory task (which is also simulated, as described later). There are two
additional functional features of the PBWM model: (1) a mechanism to en-
sure that striatal units are not stuck in NoGo mode (which would prevent
them from ever learning) and to introduce some random exploratory fir-
ing, and (2) a contrast-enhancement effect of dopamine modulation on the
Go/NoGo units that selectively modulates those units that were actually
active relative to those that were not. The details of these mechanisms are
described in the appendix, and their overall contributions to learning, along
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Figure 8: Phase-based sequence of operations in the PBWM model for three
input states of a simple Store, Ignore, Recall task. The task is to store the S stim-
ulus, maintain it over a sequence of I (ignore) stimuli, and then recall the S
when an R is input. Four key layers in the model are represented in simple
form: PFC, sensory Input, Striatum (with Go = g and NoGo = n units), and
overall DA firing (as controlled by PVLV). The three phases per trial (−, +,
++ = PFC update) are shown as a sequence of states for the same layer (i.e.,
there is only one PFC layer that represents one thing at a time). �W indicates
key weight changes, and the font size for striatal g and n units indicates effects
of DA modulation. Syndep indicates synaptic depression into the DA system
(LV) that prevents sustained firing to the PFC S representation. In state 1, the
network had previously stored the S (through random Go firing) and is now
correctly recalling it on an R trial. The unexpected reward delivered in the plus
phase produces a DA burst, and the LV part of PVLV (not shown) learns to as-
sociate the state of the PFC with reward. State 2 shows the consequence of this
learning, where, some trials later, an S input is active and the PFC is maintaining
some other information (X). Based on existing weights, the S input triggers the
striatal Go neurons to fire in the plus phase, causing PFC to update to represent
the S. During this update phase, the LV system recognizes this S (in the PFC) as
rewarding, causing a DA burst, which increases firing of Go units, and results
in increased weights from S inputs to striatal Go units. In state 3, the Go units
(by existing weights) do not fire for the subsequent ignore (I) input, so the S
continues to be maintained. The maintained S in PFC does not continue to drive
a DA burst due to synaptic depression, so there is no DA-driven learning. If
a Go were to fire for the I input, the resulting I representation in PFC would
likely trigger a small negative DA burst, discouraging such firing again. The
same logic holds for negative feedback by causing nonreward associations for
maintenance of useless information.
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with the contributions of all the separable components of the system, are
evaluated after the basic simulation results are presented.

3.4 Model Implementation Details. The implemented PBWM model,
shown in Figure 9 (with four stripes), uses the Leabra framework, described
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Figure 9: Implemented model as applied to the 1-2-AX task. There are four
stripes in this model as indicated by the groups of units within the PFC and Stria-
tum (and the four units in the SNc and SNrThal layers). PVe represents primary
reward (r or US), which drives learning of the primary value inhibition (PVi)
part of PVLV, which cancels primary reward DA bursts. The learned value (LV)
part of PVLV has two opposing excitatory and inhibitory components, which
also differ in learning rate (LVe = fast learning rate, excitatory on DA bursts;
LVi = slow learning rate, inhibitory on DA bursts). All of these reward-value
layers encode their values as coarse-coded distributed representations. VTA
and SNc compute the DA values from these PVLV layers, and SNc projects this
modulation to the Striatum. Go and NoGo units alternate (from bottom left to
upper right) in the Striatum. The SNrThal layer computes Go-NoGo in the corre-
sponding stripe and mediates competition using kWTA dynamics. The resulting
activity drives updating of PFC maintenance currents. PFC provides context for
Input/Hidden/Output mapping areas, which represent posterior cortex.



300 R. O’Reilly and M. Frank

in detail in the appendix (O’Reilly, 1998, 2001; O’Reilly & Munakata, 2000).
Leabra uses point neurons with excitatory, inhibitory, and leak conduc-
tances contributing to an integrated membrane potential, which is then
thresholded and transformed via an x/(x + 1) sigmoidal function to pro-
duce a rate code output communicated to other units (discrete spiking can
also be used, but produces noisier results). Each layer uses a k-winners-take-
all (kWTA) function that computes an inhibitory conductance that keeps
roughly the k most active units above firing threshold and keeps the rest
below threshold. Units learn according to a combination of Hebbian and
error-driven learning, with the latter computed using the generalized recir-
culation algorithm (GeneRec; O’Reilly, 1996), which computes backprop-
agation derivatives using two phases of activation settling, as mentioned
earlier. The cortical layers in the model use standard Leabra parameters
and functionality, while the basal ganglia systems require some additional
mechanisms to implement the DA modulation of Go/NoGo units, and
toggling of PFC maintenance currents from Go firing, as detailed in the
appendix.

In some of the models, we have simplified the PFC representations so
that they directly reflect the input stimuli in a one-to-one fashion, which
simply allows us to transparently interpret the contents of PFC at any given
point. However, these PFC representations can also be trained with random
initial weights, as explored below. The ability of the PFC to develop its own
representations is a critical advance over the SRN model, for example, as
explored in other related work (Rougier, Noelle, Braver, Cohen, & O’Reilly,
2005).

4 Simulation Tests

We conducted simulation comparisons between the PBWM model and a
set of backpropagation-based networks on three different working mem-
ory tasks: (1) the 1-2-AX task as described earlier, (2) a two-store version
of the Store-Ignore-Recall (SIR) task (O’Reilly & Munakata, 2000), where
two different items need to be separately maintained, and (3) a sequence
memory task modeled after the phonological loop (O’Reilly & Soto, 2002).
These tasks provide a diverse basis for evaluating these models.

The backpropagation-based comparison networks were:

� A simple recurrent network (SRN; Elman, 1990; Jordan, 1986) with
cross-entropy output error, no momentum, an error tolerance of .1
(output err < .1 counts as 0), and a hysteresis term in updating the
context layers of .5 (c j (t) = .5h j (t − 1) + .5c j (t − 1), where c j is the
context unit for hidden unit activation h j ). Learning rate (lrate), hys-
teresis, and hidden unit size were searched for optimal values across
this and the RBP networks (within plausible ranges, using round num-
bers, e.g., lrates of .05, .1, .2, and .5; hysteresis of 0, .1, .2, .3, .5, and
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.7, hidden units of 25, 36, 49, and 100). For the 1-2-AX task, optimal
performance was with 100 hidden units, hysteresis of .5, and lrate of .1.
For the SIR-2 task, 49 hidden units were used due to extreme length of
training required, and a lrate of .01 was required to learn at all. For the
phonological loop task, 196 hidden units and a lrate of .005 performed
best.

� A real-time recurrent backpropagation learning network (RBP; Robin-
son & Fallside, 1987; Schmidhuber, 1992; Williams & Zipser, 1992),
with the same basic parameters as the SRN, and a time constant for
integrating activations and backpropagated errors of 1, and the gap
between backpropagations and the backprop time window searched
in the set of 6, 8, 10, and 16 time steps. Two time steps were required
for activation to propagate from the input to the output, so the effec-
tive backpropagation time window across discrete input events in the
sequence is half of the actual time window (e.g., 16 = 8 events, which
represents two or more outer-loop sequences). Best performance was
achieved with the longest time window (16).

� A long short-term memory (LSTM) model (Hochreiter & Schmidhuber,
1997) with forget gates as specified in Gers (2000), with the same basic
backpropagation parameters as the other networks, and four memory
cells.

4.1 The 1-2-AX Task. The task was trained as in Figure 1, with the
length of the inner-loop sequences randomly varied from one to four (i.e.,
one to four pairs of A-X, B-Y, and so on, stimuli). Specifically, each sequence
of stimuli was generated by first randomly picking a 1 or 2, and then
looping for one to four times over the following inner-loop generation
routine. Half of the time (randomly selected), a possible target sequence
(if 1, then A-X; if 2, then B-Y) was generated. The other half of the time,
a random sequence composed of an A, B, or C, followed by an X, Y, or
Z, was randomly generated. Thus, possible targets (A-X, B-Y) represent at
least 50% of trials, but actual targets (A-X in the 1 task, B-Y in the 2 task)
appear only 25% of time on average. The correct output was the L unit,
except on the target sequences (1-A-X or 2-B-Y), where it was an R. The
PBWM network received a reward if it produced the correct output (and
received the correct output on the output layer in the plus phase of each
trial), while the backpropagation networks learned from the error signal
computed relative to this correct output. One epoch of training consisted
of 25 outer-loop sequences, and the training criterion was 0 errors across
two epochs in a row (one epoch can sometimes contain only a few targets,
making a lucky 0 possible). For parameter searching results, training was
stopped after 10,000 epochs for the backpropagation models if the network
had failed to learn by this point and was scored as a failure to learn. For
statistics, 20 different networks of each type were run.
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Figure 10: Training time to reach criterion (0 errors in two successive epochs
of 25 outer-loop sequences) on the 1-2-AX task for the PBWM model and three
backpropagation-based comparison algorithms. LSTM = long short-term mem-
ory model. RBP = recurrent backpropagation (real-time recurrent learning).
SRN = simple recurrent network.

The basic results for number of epochs required to reach the criterion
training level are shown in Figure 10. These results show that the PBWM
model learns the task at roughly the same speed as the comparison back-
propagation networks, with the SRN taking significantly longer. However,
the main point is not in comparing the quantitative rates of learning (it is
possible that despite a systematic search for the best parameters, other pa-
rameters could be found to make the comparison networks perform better).
Rather, these results simply demonstrate that the biologically based PBWM
model is in the same league as existing powerful computational learning
mechanisms.

Furthermore, the exploration of parameters for the backpropagation net-
works demonstrates that the 1-2-AX task represents a challenging working
memory task, requiring large numbers of hidden units and long temporal-
integration parameters for successful learning. For example, the SRN net-
work required 100 hidden units and a .5 hysteresis parameter to learn
reliably (hysteresis determines the window of temporal integration of the
context units) (see Table 1). For the RBP network, the number of hidden
units and the time window for backpropagation exhibited similar results
(see Table 2). Specifically, time windows of fewer than eight time steps re-
sulted in failures to learn, and the best results (in terms of average learning
time) were achieved with the most hidden units and the longest backprop-
agation time window.
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Table 1: Effects of Various Parameters on Learning performance in the SRN.

Hidden-layer sizes for SRN (lrate = .1, hysteresis = .5)
Hiddens 25 36 49 100
Success rate 4% 26% 86% 100%
Average epochs 5367 6350 5079 2994

Hysteresis for SRN (100 hiddens, lrate = .1)
Hysteresis .1 .2 .3 .5 .7
Success rate 0% 0% 38% 100% 98%
Average epochs NA NA 6913 2994 3044

Learning rates for SRN (100 hiddens, hysteresis = .5)
lrate .05 .1 .2
Success rate 100% 100% 96%
Average epochs 3390 2994 3308

Notes: Success rate = percentage of networks (out of 50) that learned to criterion
(0 errors for two epochs in a row) within 10,000 epochs. Average epochs - av-
erage number of epochs to reach criterion for successful networks. The optimal
performance is with 100 hidden units, learning rate .1, and hysteresis .5. Suffi-
ciently large values for the hidden units and hysteresis parameters are critical for
successful learning, indicating the strong working memory demands of this task.

Table 2: Effects of Various Parameters on Learning Performance in the RBP
Network.

Time window for RBP (lrate = .1, 100 hiddens)
Window 6 8 10 16
Success rate 6% 96% 96% 96%
Average epochs 1389 625 424 353

Hidden-layer size for RBP (lrate = .1, window = 16)
Hiddens 25 36 49 100
Success rate 96% 100% 96% 96%
Average epochs 831 650 687 353

Notes: The optimal performance is with 100 hidden units, time window =
16. As with the SRN, the relatively large size of the network and long time
windows required indicate the strong working memory demands of the
task.

4.2 The SIR-2 Task. The PBWM and comparison backpropagation al-
gorithms were also tested on a somewhat more abstract task (which has
not been tested in humans), which represents perhaps the simplest, most
direct form of working memory demands. In this store ignore recall (SIR)
task (see Table 3), the network must store an arbitrary input pattern for a
recall test that occurs after a variable number of intervening ignore trials
(O’Reilly & Munakata, 2000). Stimuli are presented during the ignore trials
and must be identified (output) by the network but do not need to be main-
tained. Tasks with this same basic structure were the focus of the original
Hochreiter and Schmidhuber (1997) work on the LSTM algorithm, where
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Table 3: Example Sequence of Trials in the SIR-2 Task, Showing What Is Input,
What Should Be Maintained in Each of Two “Stores,” and the Target Output.

Trial Input Maint-1 Maint-2 Output

1 I-D – – D
2 S1-A A – A
3 I-B A – B
4 S2-C A C C
5 I-A A C A
6 I-E A C E
7 R1 A C A
8 I-A – C A
9 I-C – C C

10 S1-D D C D
11 I-E D C E
12 R1 D C D
13 I-B – C B
14 R2 – C C

Notes: I = Ignore unit active, S1/2 = Store 1/2 unit active,
R 1/2 = Recall unit 1/2 active. The functional meaning of these
“task control” inputs must be discovered by the network. Two
versions were run. In the shared representations version, one set
of five stimulus inputs was used to encode A–E, regardless of
which control input was present. In the dedicated representa-
tions version, there were different stimulus representations for
each of the three categories of stimulus inputs (S1, S2, and I),
for a total of 15 stimulus input units. The shared representations
version proved impossible for nongated networks to learn.

they demonstrated that the dynamic gating mechanism was able to gate
in the to-be-stored stimulus, maintain it in the face of an essentially arbi-
trary number of intervening trials by having the gate turned off, and then
recall the maintained stimulus. The SIR-2 version of this task adds the need
to independently update and maintain two different stimulus memories,
instead of just one, which should provide a better test of selective updating.

We explored two versions of this task—one that had a single set of
shared stimulus representations (A-E) and another with dedicated stim-
ulus representations for each of the three different types of task control
inputs (S1, S2, I). In the dedicated representations version, the stimulus
inputs conveyed directly their functional role and made the control inputs
somewhat redundant (e.g., the I-A stimulus unit should always be ignored,
while the S1-A stimulus should always be stored in the first stimulus store).
In contrast, a stimulus in the shared representation version is ambiguous;
sometimes an A should be ignored, sometimes stored in S1, and other times
stored in S2, depending on the concomitant control input. This difference
in stimulus ambiguity made a big difference for the nongating networks,
as discussed below. The networks had 20 input units (separate A–E stimuli



Making Working Memory Work 305

for each of three different types of control inputs (S1, S2, I) = 15 units,
and the 5 control units: S1,S2,I,R1,R2). On each trial, a control input and
corresponding stimulus were randomly selected with uniform probability,
which means that S1 and S2 maintenance ended up being randomly inter-
leaved with each other. Thus, the network was required to develop a truly
independent form of updating and maintenance for these two items.

As Figure 11a shows, three out of four algorithms succeeded in learning
the dedicated stimulus items version of the task within roughly compa-
rable numbers of epochs, while the SRN model had a very difficult time,
taking on average 40,090 epochs. We suspect that this difficulty may reflect
the limitations of the one time step of error backpropagation available for
this network, making it difficult for it to span the longer delays that often
occurred (Hochreiter & Schmidhuber, 1997).

Interestingly, the shared stimulus representations version of the task
(see Figure 11b) clearly divided the gating networks from the nongated
ones (indeed, the nongated networks—RBP and SRN—were completely
unable to achieve a more stringent criterion of four zero-error epochs in a
row, whereas both PBWM and LSTM reliably reached this level). This may
be due to the fact that there is no way to establish a fixed set of weights
between an input stimulus and a working memory representation in this
task version. The appropriate memory representation to maintain a given
stimulus must be determined entirely by the control input. In other words,
the control input must act as a gate on the fate of the stimulus input, much as
the gate input on a transistor determines the processing of the other input.

More generally, dynamic gating enables a form of dynamic variable
binding, as illustrated in Figure 12 for this SIR-2 task. The two PFC stripes in
this example act as variable “slots” that can hold any of the stimulus inputs;
which slot a given input gets “bound” to is determined by the gating system
as driven by the control input (S1 or S2). This ability to dynamically route a
stimulus to different memory locations is very difficult to achieve without a
dynamic gating system, as our results indicate. Nevertheless, it is essential to
emphasize that despite this additional flexibility provided by the adaptive
gating mechanism, the PBWM network is by no means a fully general-
purpose variable binding system. The PFC representations must still learn
to encode the stimulus inputs, and other parts of the network must learn
to respond appropriately to these PFC representations. Therefore, unlike a
traditional symbolic computer, it is not possible to store any arbitrary piece
of information in a given PFC stripe.

Figure 13 provides important confirmation that the PVLV learning mech-
anism is doing what we expect it to in this task, as represented in earlier
discussion of the SIR task (e.g., see Figure 8). Specifically, we expect that the
system will generate large positive DA bursts for Store events and not for
Ignore events. This is because the Store signal should be positively associ-
ated with correct performance (and thus reward), while the Ignore signal
should not be. This is exactly what is observed.
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Figure 11: Training time to reach criterion (0 errors in 2 consecutive epochs
of 100 trials each) on the SIR-2 task for the PBWM model and three
backpropagation-based comparison algorithms, for (a) dedicated stimulus
items (stimulus set = 5 items, A–E) and (b) shared stimulus items (stimulus
set = 2 items, A–B). LSTM = long short-term memory model. RBP = recur-
rent backpropagation (real-time recurrent learning). SRN = simple recurrent
network. The SRN does significantly worse in both cases (note the logarithmic
scale), and with shared items, the nongated networks suffer considerably rela-
tive to the gated ones, most likely because of the variable binding functionality
that a gating mechanism provides, as illustrated in Figure 12.

4.3 The Phonological Loop Sequential Recall Task. The final simula-
tion test involves a simplified model of the phonological loop, based on
earlier work (O’Reilly & Soto, 2002). The phonological loop is a working
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Figure 12: Gating can achieve a form of dynamic variable binding, as illustrated
in the SIR-2 task. The store command (S1 or S2) can drive gating signals in
different stripes in the BG, causing the input stimulus item (A,B, . . .) to be
stored in the associated PFC stripe. Thus, the same input item can be encoded
in a different neural “variable slot” depending on other inputs. Nevertheless,
these neural stripes are not fully general like traditional symbolic variables;
they must learn to encode the input items, and other areas must learn to decode
these representations.

memory system that can actively maintain a short chunk of phonological
(verbal) information (e.g., Baddeley, 1986; Baddeley, Gathercole, & Papagno,
1998; Burgess & Hitch, 1999; Emerson & Miyake, 2003). In essence, the task
of this model is to encode and replay a sequence of “phoneme” inputs,
much as in the classic psychological task of short-term serial recall. Thus,
it provides a simple example of sequencing, which has often been linked
with basal ganglia and prefrontal cortex function (e.g., Berns & Sejnowski,
1998; Dominey et al., 1995; Nakahara et al., 2001).

As we demonstrated in our earlier model (O’Reilly & Soto, 2002), an
adaptively gated working memory architecture provides a particularly ef-
ficient and systematic way of encoding phonological sequences. Because
phonemes are a small closed class of items, each independently updatable
PFC stripe can learn to encode this basic vocabulary. The gating mecha-
nism can then dynamically gate incoming phonemes into stripes that im-
plicitly represent the serial order information. For example, a given stripe
might always encode the fifth phoneme in a sequence, regardless of which
phoneme it was. The virtue of this system is that it provides a particularly
efficient basis for generalization to novel phoneme sequences: as long as
each stripe can encode any of the possible phonemes and gating is based
on serial position and not phoneme identity, the system will generalize per-
fectly to novel sequences (O’Reilly & Soto, 2002). As noted above, this is an
example of variable binding, where the stripes are variable-like slots for a
given position, and the gating “binds” a given input to its associated slot.
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Figure 13: (a) Average simulated DA values in the PBWM model for different
event types over training. Within the first 50 epochs, the model learns strong,
positive DA values for both types of storage events (Store), which reinforces
gating for these events. In contrast, low DA values are generated for Ignore and
Recall events. (b) Average LVe values, representing the learned value (i.e., CS
associations with reward value) of various event types. As the model learns to
perform well, it accurately perceives the reward at Recall events. This general-
izes to the Store events, but the Ignore events are not reliably associated with
reward, and thus remain at low levels.

Our earlier model was developed in advance of the PBWM learning
mechanisms and used a hand-coded gating mechanism to demonstrate the
power of the underlying representational scheme. In contrast, we trained
the present networks from random initial weights to learn this task. Each
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training sequence consisted of an encoding phase, where the current se-
quence of phonemes was presented in order, followed by a retrieval phase
where the network had to output the phonemes in the order they were
encoded. Sequences were of length 3, and only 10 simulated phonemes
were used, represented locally as one out of 10 units active. Sequence order
information was provided to the network in the form of an explicit “time”
input, which counted up from 1 to 3 during both encoding and retrieval.
Also, encoding versus retrieval phase was explicitly signaled by two units
in the input. An example input sequence would be: E-1-‘B,’ E-2-‘A,’ E-3-‘G,’
R-1, R-2, R-3, where E/R is the encoding/recall flag, the next digit specifies
the sequence position (“time”), and the third is the phoneme (not present
in the input during retrieval).

There are 1000 possible sequences (103), and the networks were trained
on a randomly selected subset of 300 of these, with another nonoverlapping
sample of 300 used for generalization testing at the end of training. Both
of the gated networks (PBWM and LSTM) had six stripes or memory cells
instead of four, given that three items had to be maintained at a time, and
the networks benefit from having extra stripes to explore different gating
strategies in parallel. The PFC representations in the PBWM model were
subject to learning (unlike previous simulations, where they were simply a
copy of the input, for analytical simplicity) and had 42 units per stripe, as in
the O’Reilly and Soto (2002) model, and there were 100 hidden units. There
were 24 units per memory cell in the LSTM model (note that computation
increases as a power of 2 per memory cell unit in LSTM, setting a relatively
low upper limit on the number of such cells).

Figure 14 shows the training and testing results. Both gated models
(PBWM, LSTM) learned more rapidly than the nongated backpropagation-
based networks (RBP, SRN). Furthermore, the RBP network was unable to
learn unless we presented the entire set of training sequences in a fixed order
(other networks had randomly ordered presentation of training sequences).
This was true regardless of the RBP window size (even when it was exactly
the length of a sequence). Also, the SRN could not learn with only 100 hid-
den units, so 196 were used. For both the RBP and SRN networks, a lower
learning rate of .005 was required to achieve stable convergence. In short,
this was a difficult task for these networks to learn.

Perhaps the most interesting results are the generalization test results
shown in Figure 14b. As was demonstrated in the O’Reilly and Soto (2002)
model, gating affords considerable advantages in the generalization to
novel sequences compared to the RBP and SRN networks. It is clear that
the SRN network in particular simply “memorizes” the training sequences,
whereas the gated networks (PBWM, LSTM) develop a very systematic
solution where each working memory stripe or slot learns to encode a
different element in the sequence. This is a good example of the advantages
of the variable-binding kind of behavior supported by adaptive gating, as
discussed earlier.
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Figure 14: (a) Learning rates for the different algorithms on the phonological
loop task, replicating previous general patterns (criterion is one epoch of 0 error).
(b) Generalization performance (testing on 300 novel, untrained sequences),
showing that the gating networks (PBWM and LSTM) exhibit substantially
better generalization, due to their ability to dynamically gate items into active
memory “slots” based on their order of presentation.

4.4 Tests of Algorithm Components. Having demonstrated that the
PBWM model can successfully learn a range of different challenging work-
ing memory tasks, we now test the role of specific subcomponents of the
algorithm to demonstrate their contribution to the overall performance.
Table 4 shows the results of eliminating various portions of the model in
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Table 4: Results of Various Tests for the Importance of Various Separable Parts
of the PBWM Algorithm, Shown as a Percentage of Trained Networks That Met
Criterion (Success Rate).

Success Rate (%)

Manipulation 12ax SIR-2 Loop

No Hebbian 95 100 100
No DA contrast enhancement 80 95 90
No Random Go exploration 0 95 100
No LVi (slow LV baseline) 15 90 30
No SNrThal DA Mod, DA = 1.0 15 5 0
No SNrThal DA Mod, DA = 0.5 70 20 0
No SNrThal DA Mod, DA = 0.2 80 30 20
No SNrThal DA Mod, DA = 0.1 55 40 20
No DA modulation at all 0 0 0

Notes: With the possible exception of Hebbian learning, all of the com-
ponents clearly play an important role in overall learning, for the reasons
described in the text as the algorithm was introduced. The No SNrThal
DA Mod cases eliminate stripe-wise structural credit assignment; con-
trols for overall levels of DA modulation are shown. The final No DA
Modulation at all condition completely eliminates the influence of the
PVLV DA system on Striatum Go/NoGo units, clearly indicating that
PVLV (i.e., learning) is key.

terms of percentage of networks successfully learning to criterion. This
shows that each separable component of the algorithm plays an important
role, with the possible exception of Hebbian learning (which was present
only in the “posterior cortical” (Hidden/Output) portion of the network).
Different models appear to be differentially sensitive to these manipula-
tions, but all are affected relative to the 100% performance of the full model.
For the “No SNrThal DA Mod” manipulation, which eliminates structural
credit assignment via the stripe-wise modulation of DA by the SNrThal
layer, we also tried reducing the overall strength of the DA modulation of
the striatum Go/NoGo units, with the idea that the SNrThal modulation
also tends to reduce DA levels overall. Therefore, we wanted to make sure
any impairment was not just a result of a change in overall DA levels; a
significant impairment remains even with this manipulation.

5 Discussion

The PBWM model presented here demonstrates powerful learning abilities
on demonstrably complex and difficult working memory tasks. We have
also tested it informally on a wider range of tasks, with similarly good
results. This may be the first time that a biologically based mechanism
for controlling working memory has been demonstrated to compare favor-
ably with the learning abilities of more abstract and biologically implausible
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backpropagation-based temporal learning mechanisms. Other existing sim-
ulations of learning in the basal ganglia tend to focus on relatively simple se-
quencing tasks that do not require complex working memory maintenance
and updating and do not require learning of when information should and
should not be stored in working memory. Nevertheless, the central ideas
behind the PBWM model are consistent with a number of these existing
models (Schultz et al., 1995; Houk et al., 1995; Schultz et al., 1997; Suri et al.,
2001; Contreras-Vidal & Schultz, 1999; Joel et al., 2002), thereby demonstrat-
ing that an emerging consensus view of basal ganglia learning mechanisms
can be applied to more complex cognitive functions.

The central functional properties of the PBWM model can be summarized
by comparison with the widely used SRN backpropagation network, which
is arguably the simplest form of a gated working memory model. The
gating aspect of the SRN becomes more obvious when the network has to
settle over multiple update cycles for each input event (as in an interactive
network or to measure reaction times from a feedforward network). In this
case, it is clear that the context layer must be held constant and be protected
from updating during these cycles of updating (settling), and then it must
be rapidly updated at the end of settling (see Figure 15). Although the SRN
achieves this alternating maintenance and updating by fiat, in a biological
network it would almost certainly require some kind of gating mechanism.
Once one recognizes the gating mechanism hidden in the SRN, it is natural
to consider generalizing such a mechanism to achieve a more powerful,
flexible type of gating.

This is exactly what the PBWM model provides, by adding the follow-
ing degrees of freedom to the gating signal: (1) gating is dynamic, such
that information can be maintained over a variable number of trials in-
stead of automatically gating every trial; (2) the context representations
are learned, instead of simply being copies of the hidden layer, allowing
them to develop in ways that reflect the unique demands of working mem-
ory representations (e.g., Rougier & O’Reilly, 2002; Rougier et al., 2005);
(3) there can be multiple context layers (i.e., stripes), each with its own
set of representations and gating signals. Although some researchers have
used a spectrum of hysteresis variables to achieve some of this additional
flexibility within the SRN, it should be clear that the PBWM model affords
considerably more flexibility in the maintenance and updating of working
memory information.

Moreover, the similar good performance of PBWM and LSTM models
across a range of complex tasks clearly demonstrates the advantages of
dynamic gating systems for working memory function. Furthermore, the
PBWM model is biologically plausible. Indeed, the general functions of
each of its components were motivated by a large base of literature span-
ning multiple levels of analysis, including cellular, systems, and psycho-
logical data. As such, the PBWM model can be used to explore possible
roles of the individual neural systems involved by perturbing parameters
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Figure 15: The simple recurrent network (SRN) as a gating network. When
processing of each input event requires multiple cycles of settling, the context
layer must be held constant over these cycles (i.e., its gate is closed, panel a ).
After processing an event, the gate is opened to allow updating of the context
(copying of hidden activities to the context, panel b). This new context is then
protected from updating during the processing of the next event (panel c).
In comparison, the PBWM model allows more flexible, dynamic control of the
gating signal (instead of automatic gating each time step), with multiple context
layers (stripes) that can each learn their own representations (instead of being
a simple copy).

to simulate development, aging, pharmacological manipulations, and neu-
rological dysfunction. For example, we think the model can explicitly test
the implications of striatal dopamine dysfunction in producing cognitive
deficits in conditions such as Parkinson’s disease and ADHD (e.g., Frank
et al., 2004; Frank, 2005). Further, recent extensions to the framework have
yielded insights into possible divisions of labor between the basal ganglia
and orbitofrontal cortex in reinforcement learning and decision making
(Frank & Claus, 2005).

Although the PBWM model was designed to include many central as-
pects of the biology of the PFC/BG system, it also goes beyond what is
currently known and omits many biological details of the real system.
Therefore, considerable further experimental work is necessary to test the
specific predictions and neural hypotheses behind the model, and further
elaboration and revision of the model will undoubtedly be necessary.

Because the PBWM model represents a level of modeling intermediate
between detailed biological models and powerful, abstract cognitive and
computational models, it has the potential to build important bridges be-
tween these disparate levels of analysis. For example, the abstract ACT-R
cognitive architecture has recently been mapped onto biological substrates
including the BG and PFC (Anderson et al., 2004; Anderson & Lebiere,
1998), with the specific role ascribed to the BG sharing some central as-
pects of its role in the PBWM model. On the other end of the spectrum,
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biologically based models have traditionally been incapable of simulating
complex cognitive functions such as problem solving and abstract reason-
ing, which make extensive use of dynamic working memory updating and
maintenance mechanisms to exhibit controlled processing over a time scale
from seconds to minutes. The PBWM model should in principle allow mod-
els of these phenomena to be developed and their behavior compared with
more abstract models, such as those developed in ACT-R.

One of the major challenges to this model is accounting for the extreme
flexibility of the human cognitive apparatus. Instead of requiring hundreds
of trials of training on problems like the 1-2-AX task, people can perform
this task almost immediately based on verbal task instructions. Our current
model is more appropriate for understanding how agents can learn which
information to hold in mind via trial and error, as would be required if
monkeys were to perform the task.1 Understanding the human capacity
for generativity may be the greatest challenge facing our field, so we cer-
tainly do not claim to have solved it. Nevertheless, we do think that the
mechanisms of the PBWM model, and in particular its ability to exhibit
limited variable-binding functionality, are critical steps along the way. It
may be that over the 13 or so years it takes to fully develop a functional
PFC, people have developed a systematic and flexible set of representations
that support dynamic reconfiguration of input-output mappings according
to maintained PFC representations. Thus, these PFC “variables” can be ac-
tivated by task instructions and support novel task performance without
extensive training. This and many other important problems, including
questions about the biological substrates of the PBWM model, remain to be
addressed in future research.

Appendix: Implementational Details

The model was implemented using the Leabra framework, which is de-
scribed in detail in O’Reilly and Munakata (2000) and O’Reilly (2001), and
summarized here. See Table 5 for a listing of parameter values, nearly all
of which are at their default settings. These same parameters and equa-
tions have been used to simulate over 40 different models in O’Reilly and
Munakata (2000) and a number of other research models. Thus, the model
can be viewed as an instantiation of a systematic modeling framework
using standardized mechanisms, instead of constructing new mechanisms
for each model. (The model can be obtained by e-mailing the first author at
oreilly@psych.colorado.edu.)

1 In practice, monkeys would likely require an extensive shaping procedure to learn
the relatively complex 1-2-AX hierarchical structure piece by piece. However, we argue
that much of the advantage of shaping may have to do with the motivational state of the
organism: it enables substantial levels of success early on, to keep motivated. The model
currently has no such motivational constraints and thus does not need shaping.
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Table 5: Parameters for the Simulation.

Parameter Value Parameter Value

El 0.15 gl 0.10
Ei 0.15 gi 1.0
Ee 1.00 ge 1.0
Vrest 0.15 � 0.25
τ .02 γ 600
k in/out 1 k hidden 7
k PFC 4 k striatum 7
k PVLV 1
khebb .01 ε .01
to PFC khebb .001∗ to PFC ε .001∗

Notes: See the equations in the text for explanations of parameters.
All are standard default parameter values except for those with an *.
The slower learning rate of PFC connections produced better results
and is consistent with a variety of converging evidence, suggesting
that the PFC learns more slowly than the rest of cortex (Morton &
Munakata, 2002).

A.1 Pseudocode. The pseudocode for Leabra is given here, showing
exactly how the pieces of the algorithm described in more detail in the
subsequent sections fit together.

Outer loop: Iterate over events (trials) within an epoch. For each event:

1. Iterate over minus (−), plus (+), and update (++) phases of settling
for each event.
(a) At start of settling:

i. For non-PFC/BG units, initialize state variables (e.g., activa-
tion, v m).

ii. Apply external patterns (clamp input in minus, input and out-
put, external reward based on minus-phase outputs).

(b) During each cycle of settling, for all nonclamped units:
i. Compute excitatory netinput (ge (t) or η j ; equation A.3) (equa-

tion 24 for SNr/Thal units).
ii. For Striatum Go/NoGo units in ++ phase, compute addi-

tional excitatory and inhibitory currents based on DA inputs
from SNc (equation A.20).

iii. Compute kWTA inhibition for each layer, based on g�
i (equa-

tion A.6):
A. Sort units into two groups based on g�

i : top k and remaining
k + 1 to n.

B. If basic, find k and k + 1th highest; if average based,
compute average of 1 → k & k + 1 → n.

C. Set inhibitory conductance gi from g�
k and g�

k+1 (equa-
tion A.5).
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iv. Compute point-neuron activation combining excitatory input
and inhibition (equation A.1).

(c) After settling, for all units:
i. Record final settling activations by phase (y−

j , y+
j , y++).

ii. At end of + and ++ phases, toggle PFC maintenance currents
for stripes with SNr/Thal act > threshold (.1).

2. After these phases, update the weights (based on linear current weight
values):
(a) For all non-BG connections, compute error-driven weight changes

(equation A.8) with soft weight bounding (equation A.9), Hebbian
weight changes from plus-phase activations (equation A.7), and
overall net weight change as weighted sum of error-driven and
Hebbian (equation A.10).

(b) For PV units, weight changes are given by delta rule computed as
difference between plus phase external reward value and minus
phase expected rewards (equation A.11).

(c) For LV units, only change weights (using equation A.13) if PV
expectation > θpv or external reward/punishment actually
delivered.

(d) For Striatum units, weight change is the delta rule on DA-
modulated second-plus phase activations minus unmodulated
plus phase acts (equation A.19).

(e) Increment the weights according to net weight change.

A.2 Point Neuron Activation Function. Leabra uses a point neuron
activation function that models the electrophysiological properties of real
neurons, while simplifying their geometry to a single point. The membrane
potential Vm is updated as a function of ionic conductances g with reversal
(driving) potentials E as follows:

�Vm(t) = τ
∑

c

gc(t)gc(Ec − Vm(t)), (A.1)

with three channels (c) corresponding to e excitatory input, l leak current,
and i inhibitory input. Following electrophysiological convention, the over-
all conductance is decomposed into a time-varying component gc(t) com-
puted as a function of the dynamic state of the network, and a constant gc

that controls the relative influence of the different conductances.
The excitatory net input/conductance ge (t) or η j is computed as the

proportion of open excitatory channels as a function of sending activations
times the weight values:

η j = ge (t) = 〈xiwij〉 = 1
n

∑
i

xiwij. (A.2)
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The inhibitory conductance is computed via the kWTA function described
in the next section, and leak is a constant.

Activation communicated to other cells (yj ) is a thresholded (�) sig-
moidal function of the membrane potential with gain parameter γ :

yj (t) = 1(
1 + 1

γ [Vm(t)−�]+

) , (A.3)

where [x]+ is a threshold function that returns 0 if x < 0 and x if x > 0. Note
that if it returns 0, we assume yj (t) = 0, to avoid dividing by 0. To produce
a less discontinuous deterministic function with a softer threshold, the
function is convolved with a gaussian noise kernel (µ = 0, σ = .005), which
reflects the intrinsic processing noise of biological neurons,

y∗
j (x) =

∫ ∞

−∞

1√
2πσ

e−z2/(2σ 2) yj (z − x)dz, (A.4)

where x represents the [Vm(t) − �]+ value, and y∗
j (x) is the noise-convolved

activation for that value. In the simulation, this function is implemented
using a numerical lookup table.

A.3 k-Winners-Take-All Inhibition. Leabra uses a kWTA (k-Winners-
Take-All) function to achieve inhibitory competition among units within
a layer (area). The kWTA function computes a uniform level of inhibitory
current gi for all units in the layer, such that the k + 1th most excited unit
within a layer is generally below its firing threshold, while the kth is typi-
cally above threshold,

gi = g�
k+1 + q

(
g�

k − g�
k+1

)
, (A.5)

where 0 < q < 1 (.25 default used here) is a parameter for setting the in-
hibition between the upper bound of g�

k and the lower bound of g�
k+1.

These boundary inhibition values are computed as a function of the level
of inhibition necessary to keep a unit right at threshold,

g�
i = g∗

e ḡe (Ee − �) + gl ḡl (El − �)
� − Ei

, (A.6)

where g∗
e is the excitatory net input without the bias weight contribution.

This allows the bias weights to override the kWTA constraint.
In the basic version of the kWTA function, which is relatively rigid about

the kWTA constraint and is therefore used for output layers, g�
k and g�

k+1
are set to the threshold inhibition value for the kth and k + 1th most excited
units, respectively. In the average-based kWTA version, g�

k is the average
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g�
i value for the top k most excited units, and g�

k+1 is the average of g�
i

for the remaining n − k units. This version allows more flexibility in the
actual number of units active depending on the nature of the activation
distribution in the layer.

A.4 Hebbian and Error-Driven Learning. For learning, Leabra uses
a combination of error-driven and Hebbian learning. The error-driven
component is the symmetric midpoint version of the GeneRec algorithm
(O’Reilly, 1996), which is functionally equivalent to the deterministic
Boltzmann machine and contrastive Hebbian learning (CHL). The network
settles in two phases—an expectation (minus) phase, where the network’s
actual output is produced, and an outcome (plus) phase, where the target
output is experienced—and then computes a simple difference of a pre-
and postsynaptic activation product across these two phases. For Hebbian
learning, Leabra uses essentially the same learning rule used in competitive
learning or mixtures-of-gaussians, which can be seen as a variant of the Oja
normalization (Oja, 1982). The error-driven and Hebbian learning compo-
nents are combined additively at each connection to produce a net weight
change.

The equation for the Hebbian weight change is

�hebbwij = x+
i y+

j − y+
j wij = y+

j (x+
i − wij), (A.7)

and for error-driven learning using CHL,

�errwij = (x+
i y+

j ) − (x−
i y−

j ), (A.8)

which is subject to a soft-weight bounding to keep within the 0 − 1 range:

�sberrwij = [�err]+(1 − wij) + [�err]−wij. (A.9)

The two terms are then combined additively with a normalized mixing
constant khebb:

�wij = ε[khebb(�hebb) + (1 − khebb)(�sberr)]. (A.10)

A.5 PVLV Equations. See O’Reilly et al. (2005) for further details on the
PVLV system. We assume that time is discretized into steps that correspond
to environmental events (e.g., the presentation of a CS or US). All of the
following equations operate on variables that are a function of the current
time step t. We omit the t in the notation because it would be redundant.
PVLV is composed of two systems, PV (primary value) and LV (learned
value), each of which in turn is composed of two subsystems (excitatory
and inhibitory). Thus, there are four main value representation layers in
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PVLV (PVe, PVi, LVe, LVi), which then drive the dopamine (DA) layers
(VTA/SNc).

A.5.1 Value Representations. The PVLV value layers use standard Leabra
activation and kWTA dynamics as described above, with the following
modifications. They have a three-unit distributed representation of the
scalar values they encode, where the units have preferred values of (0, .5, 1).
The overall value represented by the layer is the weighted average of the
unit’s activation times its preferred value, and this decoded average is dis-
played visually in the first unit in the layer. The activation function of these
units is a “noisy” linear function (i.e., without the x/(x + 1) nonlinearity,
to produce a linear value representation, but still convolved with gaussian
noise to soften the threshold, as for the standard units, equation A.4), with
gain γ = 220, noise variance σ = .01, and a lower threshold � = .17. The
k for kWTA (average based) is 1, and the q value is .9 (instead of the de-
fault of .6). These values were obtained by optimizing the match for value
represented with varying frequencies of 0-1 reinforcement (e.g., the value
should be close to .4 when the layer is trained with 40% 1 values and 60% 0
values). Note that having different units for different values, instead of the
typical use of a single unit with linear activations, allows much more com-
plex mappings to be learned. For example, units representing high values
can have completely different patterns of weights than those encoding low
values, whereas a single unit is constrained by virtue of having one set of
weights to have a monotonic mapping onto scalar values.

A.5.2 Learning Rules. The PVe layer does not learn and is always just
clamped to reflect any received reward value (r ). By default, we use a value
of 0 to reflect negative feedback, .5 for no feedback, and 1 for positive
feedback (the scale is arbitrary). The PVi layer units (yj ) are trained at every
point in time to produce an expectation for the amount of reward that will
be received at that time. In the minus phase of a given trial, the units settle
to a distributed value representation based on sensory inputs. This results
in unit activations y−

j and an overall weighted average value across these
units denoted PVi . In the plus phase, the unit activations (y+

j ) are clamped
to represent the actual reward r (a.k.a. PVe ). The weights (wij) into each PVi
unit from sending units with plus-phase activations x+

i , are updated using
the delta rule between the two phases of PVi unit activation states:

�wij = ε(y+
j − y−

j )x+
i . (A.11)

This is equivalent to saying that the US/reward drives a pattern of activation
over the PVi units, which then learn to activate this pattern based on sensory
inputs.
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The LVe and LVi layers learn in much the same way as the PVi layer
(see equation A.11), except that the PV system filters the training of the LV
values, such that they learn only from actual reward outcomes (or when
reward is expected by the PV system but is not delivered), and not when
no rewards are present or expected. This condition is

PVfilter = PVi < θmin ∨ PVe < θmin ∨
PVi > θmax ∨ PVe > θmax (A.12)

�wi =
{

ε(y+
j − y−

j )x+
i if PVfilter

0 otherwise
, (A.13)

where θmin is a lower threshold (.2 by default), below which negative feed-
back is indicated, and θmax is an upper threshold (.8), above which positive
feedback is indicated (otherwise, no feedback is indicated). Biologically, this
filtering requires that the LV systems be driven directly by primary rewards
(which is reasonable and required by the basic learning rule anyway) and
that they learn from DA dips driven by high PVi expectations of reward
that are not met. The only difference between the LVe and LVi systems is the
learning rate ε, which is .05 for LVe and .001 for LVi. Thus, the inhibitory LVi
system serves as a slowly integrating inhibitory cancellation mechanism for
the rapidly adapting excitatory LVe system.

The four PV and LV distributed value representations drive the
dopamine layer (VTA/SNc) activations in terms of the difference between
the excitatory and inhibitory terms for each. Thus, there is a PV delta and
an LV delta:

δpv = PVe − PVi (A.14)

δlv = LVe − LVi . (A.15)

With the differences in learning rate between LVe (fast) and LVi (slow),
the LV delta signal reflects recent deviations from expectations and not the
raw expectations themselves, just as the PV delta reflects deviations from
expectations about primary reward values. This is essential for learning
to converge and stabilize when the network has mastered the task (as the
results presented in the article show). We also impose a minimum value on
the LVi term of .1, so that there is always some expectation. This ensures
that low LVe learned values result in negative deltas.

These two delta signals need to be combined to provide an overall DA
delta value, as reflected in the firing of the VTA and SNc units. One sensible
way of doing so is to have the PV system dominate at the time of primary
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rewards, while the LV system dominates otherwise, using the same PV-
based filtering as holds in the LV learning rule (see equation A.13):

δ =
{

δpv if PVfilter

δlv otherwise
. (A.16)

It turns out that a slight variation of this where the LV always contributes
works slightly better, and is what is used in this article:

δ = δlv +
{

δpv if PVfilter

0 otherwise
. (A.17)

A.5.3 Synaptic Depression of LV Weights. The weights into the LV units are
subject to synaptic depression, which makes them sensitive to changes in
stimulus inputs, and not to static, persistent activations (Abbott, Varela, Sen,
& Nelson, 1997). Each incoming weight has an effective weight value w∗

that is subject to depression and recovery changes as follows,

�w∗
i = R(wi − w∗

i ) − Dxiwi , (A.18)

where R is the recovery parameter, D is the depression parameter, and wi

is the asymptotic weight value. For simplicity, we compute these changes
at the end of every trial instead of in an online manner, using R = 1 and
D = 1, which produces discrete one-trial depression and recovery.

A.6 Special Basal Ganglia Mechanisms

A.6.1 Striatal Learning Function. Each stripe (group of units) in the Striatum
layer is divided into Go versus NoGo in an alternating fashion. The DA
input from the SNc modulates these unit activations in the update phase by
providing extra excitatory current to Go and extra inhibitory current to the
NoGo units in proportion to the positive magnitude of the DA signal, and
vice versa for negative DA magnitude. This reflects the opposing influences
of DA on these neurons (Frank, 2005; Gerfen, 2000). This update phase DA
signal reflects the PVLV system’s evaluation of the PFC updates produced
by gating signals in the plus phase (see Figure 8). Learning on weights into
the Go/NoGo units is based on the activation delta between the update
(++) and plus phases:

�wi = εxi (y++ − y+). (A.19)

To reflect the finding that DA modulation has a contrast-enhancing func-
tion in the striatum (Frank, 2005; Nicola, Surmeier, & Malenka, 2000;
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Hernandez-Lopez, Bargas, Surmeier, Reyes, & Galarraga, 1997) and to pro-
duce more of a credit assignment effect in learning, the DA modulation is
partially a function of the previous plus phase activation state,

ge = γ [da]+y+ + (1 − γ )[da]+ (A.20)

where 0 < γ < 1 controls the degree of contrast enhancement (.5 is used
in all simulations), [da]+ is the positive magnitude of the DA signal (0 if
negative), y+ is the plus-phase unit activation, and ge is the extra excitatory
current produced by the da (for Go units). A similar equation is used for
extra inhibition (gi ) from negative da ([da]−) for Go units, and vice versa for
NoGo units.

A.6.2 SNrThal Units. The SNrThal units provide a simplified version of
the SNr/GPe/Thalamus layers. They receive a net input that reflects the
normalized Go–NoGo activations in the corresponding Striatum stripe:

η j =
[∑

Go − ∑
NoGo∑

Go + ∑
NoGo

]
+

(A.21)

(where []+ indicates that only the positive part is taken; when there is more
NoGo than Go, the net input is 0). This net input then drives standard
Leabra point neuron activation dynamics, with kWTA inhibitory competi-
tion dynamics that cause stripes to compete to update the PFC. This dy-
namic is consistent with the notion that competition and selection take
place primarily in the smaller GP/SNr areas, and not much in the much
larger striatum (e.g., Mink, 1996; Jaeger, Kita, & Wilson, 1994). The resulting
SNrThal activation then provides the gating update signal to the PFC: if
the corresponding SNrThal unit is active (above a minimum threshold; .1),
then active maintenance currents in the PFC are toggled.

This SNrThal activation also multiplies the per stripe DA signal from the
SNc,

δ j = snr jδ, (A.22)

where snrj is the snr unit’s activation for stripe j , and δ is the global DA
signal, equation A.16.

A.6.3 Random Go Firing. The PBWM system learns only after Go fir-
ing, so if it never fires Go, it can never learn to improve performance.
One simple solution is to induce Go firing if a Go has not fired after
some threshold number of trials. However, this threshold would have
to be either task specific or set very high, because it would effectively
limit the maximum maintenance duration of the PFC (because by updating
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PFC, the Go firing results in loss of currently maintained information).
Therefore, we have adopted a somewhat more sophisticated mechanism
that keeps track of the average DA value present when each stripe fires
a Go:

dak = dak + ε(dak − dak). (A.23)

If this value is < 0 and a stripe has not fired Go within 10 trials, a random Go
firing is triggered with some probability (.1). We also compare the relative
per stripe DA averages, if the per stripe DA average is low but above zero,
and one stripe’s dak is .05 below the average of that of the other stripe’s,

if (dak < .1) and (dak − 〈da 〉 < −.05); Go, (A.24)

a random Go is triggered, again with some probability (.1). Finally, we also
fire random Go in all stripes with some very low baseline probability (.0001)
to encourage exploration.

When a random Go fires, we set the SNrThal unit activation to be above
Go threshold, and we apply a positive DA signal to the corresponding
striatal stripe, so that it has an opportunity to learn to fire for this input
pattern on its own in the future.

A.6.4 PFC Maintenance. PFC active maintenance is supported in part
by excitatory ionic conductances that are toggled by Go firing from the
SNrThal layers. This is implemented with an extra excitatory ion chan-
nel in the basic Vm update equation, A.1. This channel has a conductance
value of .5 when active. (See Frank et al., 2001, for further discussion of
this kind of maintenance mechanism, which has been proposed by several
researchers—e.g., Lewis & O’Donnell, 2000; Fellous et al., 1998; Wang, 1999;
Dilmore, Gutkin, & Ermentrout, 1999; Gorelova & Yang, 2000; Durstewitz,
Seamans, & Sejnowski, 2000b.) The first opportunity to toggle PFC main-
tenance occurs at the end of the first plus phase and then again at the end
of the second plus phase (third phase of settling). Thus, a complete update
can be triggered by two Go’s in a row, and it is almost always the case that
if a Go fires the first time, it will fire the next, because Striatum firing is
primarily driven by sensory inputs, which remain constant.
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