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Article abstract: The prefrontal cortex (PFC) has long been thought to serve as an “executive” that
controls the selection of actions, and cognitive functions more generally. However, the mechanistic basis
of this executive function has not been clearly specified, often amounting to a homunculus. This paper
reviews recent attempts to deconstruct this homunculus by elucidating the precise computational and
neural mechanisms underlying the executive functions of the PFC. The overall approach builds upon
existing mechanistic models of the basal ganglia and frontal systems known to play a critical role in
motor control and action selection, where the basal ganglia provide a “Go” vs. “NoGo” modulation of
frontal action representations. In our model, the basal ganglia modulate working memory representations
in prefrontal areas, to support more abstract executive functions. We have developed a computational
model of this system that is capable of developing human-like performance on working memory and
executive control tasks through trial-and-error learning. This learning is based on reinforcement learning
mechanisms associated with the midbrain dopaminergic system and its activation via the BG and
amygdala. Finally, we briefly describe various empirical tests of this framework.

This document contains three sections intended to be
included as an online appendix:

1. Instructions for Downloading PDP++
2. Implementational Details: Description of the Leabra

Algorithm
3. Description of the Working Memory Tasks to be Mod-

elled in the Multi-Task (MT) Model

1. Instructions for Downloading and Installing
PDP++

All models constructed by the authors and referred to
in the paper were created using PDP++, a frequently
updated, object-oriented, GUI-enabled version of the
Parallel Distributed Architecture originally developed by
Rumelhart and McClelland (Rumelhart & McClelland,
1986; McClelland & Rumelhart, 1986). Instructions for
downloading, installing and using PDP++ are available at:

http://psych.colorado.edu/ oreilly/PDP++/PDP++.html

Copyright (C) 1995-2003 Chadley K. Dawson, Randall
C. O’Reilly, James L. McClelland, and Carnegie Mellon
University.

†Author for correspondence oreilly@psych.colorado.edu.

2. Implementational Details: Description of the
Leabra Algorithm

The model was implemented using the Leabra framework,
which is described in detail in O’Reilly and Munakata (2000)
and O’Reilly (2001), and summarized here. These same
parameters and equations have been used to simulate over
40 different models in O’Reilly and Munakata (2000), and
a number of other research models. Thus, the model can
be viewed as an instantiation of a systematic modeling
framework using standardized mechanisms, instead of con-
structing new mechanisms for each model.

(a) Point Neuron Activation Function

Leabra uses a point neuron activation function that models
the electrophysiological properties of real neurons, while
simplifying their geometry to a single point. This func-
tion is nearly as simple computationally as the standard
sigmoidal activation function, but the more biologically-
based implementation makes it considerably easier to model
inhibitory competition, as described below. Further, using
this function enables cognitive models to be more easily
related to more physiologically detailed simulations, thereby
facilitating bridge-building between biology and cognition.

The membrane potential Vm is updated as a function of
ionic conductances g with reversal (driving) potentials E as
follows:

∆Vm(t) = τ
X

c

gc(t)gc(Ec − Vm(t)) (1)
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2 Toward an Executive Without a Homunculus Hazy Et Al.

with 3 channels (c) corresponding to: e excitatory input; l
leak current; and i inhibitory input. Following electrophysi-
ological convention, the overall conductance is decomposed
into a time-varying component gc(t) computed as a function
of the dynamic state of the network, and a constant gc that
controls the relative influence of the different conductances.
The equilibrium potential can be written in a simplified form
by setting the excitatory driving potential (Ee) to 1 and the
leak and inhibitory driving potentials (El and Ei) of 0:

V ∞

m =
gege

gege + glgl + gigi
(2)

which shows that the neuron is computing a balance between
excitation and the opposing forces of leak and inhibition.
This equilibrium form of the equation can be understood in
terms of a Bayesian decision making framework (O’Reilly &
Munakata, 2000).

The excitatory net input/conductance ge(t) or ηj is
computed as the proportion of open excitatory channels as
a function of sending activations times the weight values:

ηj = ge(t) = 〈xiwij〉 =
1

n

X

i

xiwij (3)

The inhibitory conductance is computed via the kWTA
function described in the next section, and leak is a constant.

Activation communicated to other cells (yj) is a thresh-
olded (Θ) sigmoidal function of the membrane potential with
gain parameter γ:

yj(t) =
1

“

1 + 1
γ[Vm(t)−Θ]+

” (4)

where [x]+ is a threshold function that returns 0 if x <
0 and x if X > 0. Note that if it returns 0, we assume
yj(t) = 0, to avoid dividing by 0. As it is, this function
has a very sharp threshold, which interferes with graded
learning learning mechanisms (e.g., gradient descent). To
produce a less discontinuous deterministic function with a
softer threshold, the function is convolved with a Gaussian
noise kernel (µ = 0, σ = .005), which reflects the intrinsic
processing noise of biological neurons:

y∗j (x) =

Z

∞

−∞

1√
2πσ

e−z2/(2σ2)yj(z − x)dz (5)

where x represents the [Vm(t) − Θ]+ value, and y∗j (x) is the
noise-convolved activation for that value. In the simulation,
this function is implemented using a numerical lookup table.

(b) k-Winners-Take-All Inhibition

Leabra uses a kWTA (k-Winners-Take-All) function to
achieve inhibitory competition among units within a layer
(area). The kWTA function computes a uniform level of
inhibitory current for all units in the layer, such that
the k + 1th most excited unit within a layer is generally
below its firing threshold, while the kth is typically above
threshold. Activation dynamics similar to those produced
by the kWTA function have been shown to result from
simulated inhibitory interneurons that project both feed-
forward and feedback inhibition (O’Reilly & Munakata,
2000). Thus, although the kWTA function is somewhat
biologically implausible in its implementation (e.g., requir-
ing global information about activation states and using
sorting mechanisms), it provides a computationally effective
approximation to biologically plausible inhibitory dynamics.

kWTA is computed via a uniform level of inhibitory
current for all units in the layer as follows:

gi = gΘ
k+1 + q(gΘ

k − gΘ
k+1) (6)

where 0 < q < 1 (.25 default used here) is a parameter
for setting the inhibition between the upper bound of gΘ

k

and the lower bound of gΘ
k+1. These boundary inhibition

values are computed as a function of the level of inhibition
necessary to keep a unit right at threshold:

gΘ
i =

g∗e ḡe(Ee − Θ) + glḡl(El − Θ)

Θ − Ei
(7)

where g∗e is the excitatory net input without the bias weight
contribution — this allows the bias weights to override the
kWTA constraint.

In the basic version of the kWTA function, which is
relatively rigid about the kWTA constraint and is therefore
used for output layers, gΘ

k and gΘ
k+1 are set to the threshold

inhibition value for the kth and k + 1th most excited units,
respectively. Thus, the inhibition is placed exactly to allow
k units to be above threshold, and the remainder below
threshold. For this version, the q parameter is almost always
.25, allowing the kth unit to be sufficiently above the
inhibitory threshold.

In the average-based kWTA version, gΘ
k is the average

gΘ
i value for the top k most excited units, and gΘ

k+1 is the

average of gΘ
i for the remaining n − k units. This version

allows for more flexibility in the actual number of units
active depending on the nature of the activation distribution
in the layer and the value of the q parameter (which is
typically .6), and is therefore used for hidden layers.

(c) PVLV Equations

The PVLV value layers use standard Leabra activation and
kWTA dynamics as described above, with the following
modifications. They have a three-unit distributed represen-
tation of the scalar values they encode, where the units have
preferred values of (0, .5, 1). The overall value represented
by the layer is the weighted average of the unit’s activation
times its preferred value, and this decoded average is dis-
played visually in the first unit in the layer. The activation
function of these units is a “noisy” linear function (i.e.,
without the x/(x + 1) nonlinearity, to produce a linear value
representation, but still convolved with gaussian noise to
soften the threshold, as for the standard units, equation 5),
with gain γ = 220, noise variance σ = .01, and a lower
threshold Θ = .17. The k for kWTA (average based) is 1, and
the q value is .9 (instead of the default of .6). These values
were obtained by optimizing the match for value represented
with varying frequencies of 0-1 reinforcement (e.g., the value
should be close to .4 when the layer is trained with 40% 1
values and 60% 0 values). Note that having different units
for different values, instead of the typical use of a single unit
with linear activations, allows much more complex mappings
to be learned. For example, units representing high values
can have completely different patterns of weights than those
encoding low values, whereas a single unit is constrained
by virtue of having one set of weights to have a monotonic
mapping onto scalar values.

(i) Learning Rules

The PVe layer does not learn, and is always just clamped
to reflect any received reward value (r). By default we use a
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value of 0 to reflect negative feedback, .5 for no feedback, and
1 for positive feedback (the scale is arbitrary). The PVi layer
units (yj) are trained at every point in time to produce an
expectation for the amount of reward that will be received
at that time. In the minus phase of a given trial, the units
settle to a distributed value representation based on sensory
inputs. This results in unit activations y−j , and an overall
weighted average value across these units denoted PVi. In
the plus phase, the unit activations (y+

j ) are clamped to

represent the actual reward r (a.k.a., PVe). The weights
(wij ) into each PVi unit from sending units with plus-phase

activations x+
i , are updated using the delta rule between the

two phases of PVi unit activation states:

∆wij = ε(y+
j − y−j )x+

i (8)

This is equivalent to saying that the US/reward drives a
pattern of activation over the PVi units, which then learn
to activate this pattern based on sensory inputs.

The LVe and LVi layers learn in much the same way as
the PVi layer (equation 8), except that the PV system filters
the training of the LV values, such that they only learn from
actual reward outcomes (or when reward is expected by the
PV system, but is not delivered), and not when no rewards
are present or expected. This condition is:

PVfilter = PVi < θmin ∨ PVe < θmin ∨
PVi > θmax ∨ PVe > θmax (9)

∆wi =



ε(y+
j − y−j )x+

i if PVfilter

0 otherwise
(10)

where θmin is a lower threshold (.2 by default), below
which negative feedback is indicated, and θmax is an upper
threshold (.8), above which positive feedback is indicated
(otherwise, no feedback is indicated). Biologically, this fil-
tering requires that the LV systems be driven directly by
primary rewards (which is reasonable, and required by the
basic learning rule anyway), and that they learn from DA
dips driven by high PVi expectations of reward that are
not met. The only difference between the LVe and LVi
systems is the learning rate ε, which is .05 for LVe and
.001 for LVi. Thus, the inhibitory LVi system serves as a
slowly-integrating inhibitory cancellation mechanism for the
rapidly adapting excitatory LVe system.

The four PV,LV distributed value representations drive
the dopamine layer (VTA/SNc) activations in terms of the
difference between the excitatory and inhibitory terms for
each. Thus, there is a PV delta and an LV delta:

δpv = PVe − PVi (11)

δlv = LVe − LVi (12)

With the differences in learning rate between LVe (fast) and
LVi (slow), the LV delta signal reflects recent deviations
from expectations and not the raw expectations themselves,
just as the PV delta reflects deviations from expectations
about primary reward values. This is essential for learning
to converge and stabilize when the network has mastered
the task (as the results presented in the paper show). We
also impose a minimum value on the LVi term of .1, so that
there is always some expectation — this ensures that low
LVe learned values result in negative deltas.

These two delta signals need to be combined to provide an
overall DA delta value, as reflected in the firing of the VTA
and SNc units. One sensible way of doing so is to have the

PV system dominate at the time of primary rewards, while
the LV system dominates otherwise, using the same PV-
based filtering as holds in the LV learning rule (equation 10):

δ =



δpv if PVfilter

δlv otherwise
(13)

It turns out that a slight variation of this where the LV
always contributes works slightly better, and is what is used
in this paper:

δ = δlv +



δpv if PVfilter

0 otherwise
(14)

(ii) Synaptic Depression of LV Weights

The weights into the LV units are subject to synaptic depres-
sion, which makes them sensitive to changes in stimulus
inputs, and not to static, persistent activations (Abbott,
Varela, Sen, & Nelson, 1997). Each incoming weight has an
effective weight value w∗ that is subject to depression and
recovery changes as follows:

∆w∗

i = R(wi − w∗

i ) − Dxiwi (15)

where R is the recovery parameter, and D is the depression
parameter, and wi is the asymptotic weight value. For
simplicity, we compute these changes at the end of every
trial instead of in an online manner, using R = 1 and D = 1,
which produces discrete 1-trial depression and recovery.
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3. Description of the Working Memory Tasks to be
Modelled in the Multi-Task (MT) Model

(a) Motivation

An important long-term aim is to apply the PBWM model
to a wide range of previously-modeled behavioural and
neural phenomena that represent the core principles behind
our model. There are several motivations for so doing:

• We think that PBWM begins to approach a complete
set of mechanisms for supporting the essential functions
of cognitive control. The only reasonable way to test
this claim is to apply the model to a wide range of
behavioural paradigms. The selected paradigms are
ideal in this respect because they tap a range of
fundamental aspects of cognitive control (elaborated
below), have a considerable amount of empirical data,
and should be tractable given the success of existing
models.

• The existing models may have relied upon various
idiosyncrasies of the specific, more simplified algo-
rithms involved — using one unified model to address
a wide range of data greatly reduces this concern.
This is a widespread issue with cognitive models —
any small set of data can be relatively easily modeled,
and may not provide a sufficient test, especially for
more complex models. The only way to address this
issue is to expand the range of data the model is
applied to. We have had considerable experience with
this approach, using one unified modeling framework
to simulate a wide range of cognitive neuroscience phe-
nomena in O’Reilly and Munakata (2000), and using
a single hippocampal model to address a wide range
of learning and memory data (O’Reilly & Rudy, 2001;
Norman & O’Reilly, 2003; Frank, Rudy, & O’Reilly,
2003; O’Reilly & Norman, 2002).

In what follows, we outline the core tasks to be modelled,
emphasising the critical cognitive control functions involved
in each case, and summarizing some of the key findings.

(b) Core Paradigms

(i) Top-Down Biasing in the Stroop Task

The Stroop task provides the canonical example of top-
down biasing in cognitive control, where robustly main-
tained PFC representations send supporting activations
to task-appropriate processing areas in posterior cortex.
Although all of the other task domains also include this
top-down biasing function, the Stroop task provides its
simplest and most direct test. The basic Stroop effect is
that, when presented with the word “red” printed in green
ink, top-down support of the color processing pathway from
corresponding actively maintained PFC representations is
required to override the prepotent response of saying “red”
in favour of naming the ink color (green). The importance
of this extra PFC support for task-appropriate processing
is evidenced by a variety of findings from frontally-damaged
patients and neuroimaging (e.g., Cohen & Servan-Schreiber,
1992; Banich, Milham, Atchley, Cohen, Webb, Wszalek,
Kramer, Liang, Wright, Shenker, & Magin, 2000). The
standard pattern of reaction time (RT) results is shown in
Figure 1, where the dominant pathway (word reading) is
relatively impervious to interference from the non-dominant
one (color naming), but conflict greatly slows the non-
dominant pathway. PFC impairments differentially affect
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Figure 1. Typical reaction time data from the Stroop task in young
healthy adults.
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Figure 2. Reaction time data from a Stroop task where colors
and words were presented at different times relative to each other
(stimulus onset asynchrony, SOA). For word reading negative SOA
means the color preceded the word. For color naming, negative SOA
means the word preceded the color. Data from Glaser & Glaser, 1982.

this non-dominant conflict condition (e.g., Cohen & Servan-
Schreiber, 1992). This basic pattern has been simulated by
a number of models based on the top-down biasing principle
(Cohen, Dunbar, & McClelland, 1990; Cohen & Huston,
1994; O’Reilly & Munakata, 2000; Herd, Banich, & O’Reilly,
submitted).

A more challenging pattern of data comes from manipu-
lating the relative stimulus onset asynchrony (SOA) of the
color and word stimuli (Glaser & Glaser, 1982), which has
yet to be successfully modeled. The principal challenge here
is that presentation of the word prior to the color (negative
SOA in the color naming condition) actually produces less
interference than simultaneous or slightly positive SOA
conditions. We plan to address this pattern of results by
exploring the effects of stimulus transients on PFC task
activations in the PBWM model — prior Stroop models
have externally “clamped” the PFC representations and
thus lacked any dynamics to the PFC representations.

We have also applied a Stroop model to some initially
counter-intuitive fMRI results that seemed to contradict
the basic premise of top-down biasing (Herd et al., sub-
mitted; Banich et al., 2000). These results showed greater
BOLD activation for areas representing the to-be-ignored
information (i.e., word reading) in the color-naming conflict
condition relative to a neutral color-naming condition, and
no difference in activation for task-relevant (i.e., color)
processing areas across these conditions. This is just the
opposite of what the top-down biasing account would pre-
dict (greater activation from the top-down biasing of task-
relevant areas, and no effect or even inhibition in to-be-
ignored areas). Nevertheless, we showed that the observed
pattern of activations is in fact consistent with the top-down
biasing framework, as long as semantically-appropriate pat-
terns of connectivity between posterior cortical areas, and
more distributed representations in PFC are included in the
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model (Herd et al., submitted). Fitting this pattern of results
will provide additional important constraints on the model.

(ii) Working Memory Updating in the AX-CPT Task

The AX-CPT (A-X version of the continuous performance
task, as described earlier in the context of the 1-2-AX
task) requires the continuous updating of information in
working memory. To correctly discriminate the target A-X
sequence from the other possible stimulus sequences (A-Y,
B-X, B-Y), the participant must make use of some form
of memory for the cue stimulus (A or B) in processing the
probe (X or Y; note that B and Y in general represent a
class of non-A,X stimuli). Because of the rapid updating
and relatively short duration of these memory demands, it
makes sense that dynamically-gated, PFC-mediated working
memory would be critical for this task. Indeed, considerable
evidence supports this idea (Servan-Schreiber, Cohen, &
Steingard, 1997; Braver, Barch, & Cohen, 1999; Cohen,
Barch, Carter, & Servan-Schreiber, 1999; Barch, Carter,
Braver, MacDonald, Noll, & Cohen, 2001; Braver, Barch, &
Cohen, submitted).

The AX-CPT is particularly informative when run with
the target A-X sequence presented 70% of the time, and
two different interstimulus intervals (ISI) are used (short, 1-2
seconds, and long, 5-8 seconds). The frequency manipulation
produces a prepotent bias for pressing the target (right) key
when seeing the X, and for expecting an X after seeing
an A. The ISI manipulation should affect the strength of
the working memory representation of the cue stimulus
(A or B). The strength of this cue memory then interacts
with the prepotent biases to produce an opposing pattern
of performance across the B-X and A-Y trials. A strong
memory of the B cue will serve to inhibit the prepotent bias
to respond to the X, improving overall performance on B-
X, while a weak cue memory will have the opposite effects.
Conversely, a strong memory of the A cue will activate the
prepotent target-response bias (expecting an X), decreasing
performance on the A-Y trials (and a weak memory again
has opposite effects). This interaction effect provides a
nice control for overall degradation of performance, e.g., in
patient populations.

Across a number of studies, patients with schizophrenia
exhibited a pattern of responding consistent with impaired
working memory for the cue stimulus. Specifically, between
the short and long conditions, they exhibited an increase in
B-X errors and a decrease in A-Y errors (Servan-Schreiber
et al., 1997; Braver et al., 1999; Cohen et al., 1999; Barch
et al., 2001). In contrast, healthy control subjects exhibited
a slight but statistically significant increase in cue memory
related performance across delay: their B-X errors went
down while their A-Y errors went up. Furthermore, these
effects were specifically localized to the dorsolateral PFC
(Barch et al., 2001).

This complex pattern of results across conditions pro-
vides a highly constraining dataset for computational mod-
eling (e.g., Braver & Cohen, 2000; Braver et al., submit-
ted). These existing models are based on a dopamine-
based dynamic gating mechanism driven by errors in reward
expectations according to the temporal-differences (TD)
algorithm. In the PBWM model, this TD-driven dopamine
mechanism does not directly drive gating — instead, it
drives learning of the gating signal produced by the matrix
striatal neurons. These TD-driven gating models have also
been applied in several other domains discussed below —
an important subgoal of the proposed research will be to

assess the functional differences between these two types of
dynamic gating mechanisms. As discussed next, there are
reasons to believe a dopamine-based gating mechanism is
insufficient (it does not provide a selective gating signal);
we anticipate that other behavioural signatures of the two
mechanisms will become apparent in the proposed work.

(iii) Selective Working Memory Updating and Robust Main-
tenance in the 1-2-AX Task

As discussed earlier, the 1-2-AX task extends the AX-CPT
task by including an outer-loop of task-demand stimuli (1 or
2) that determine the target sequence operative over a series
of inner-loop stimuli. In addition to the rapid updating of
the AX-CPT task, this extension requires selective updating
(e.g., maintaining the outer loop while updating the inner
loop) and places stronger demands on robust maintenance
because the outer loop information must be maintained in
the face of extensive inner-loop processing and updating.
The selective gating demand renders a simple global gating
signal (e.g., as provided by a dopamine-based mechanism)
insufficient — such a global signal would cause updating of
the outer loop every time the inner loop is updated. Other
tasks below, when implemented in a more detailed, surface-
valid manner, will also likely require selective updating.

To this point, the biggest challenge with this data is
simply getting a model to learn to perform such a difficult
task — this has been demonstrated with the basic PBWM
model (O’Reilly, in press), but we will need to ensure
this is still true in the context of learning all the other
tasks. The available human data mainly shows that different
regions of PFC are used to maintain inner and outer loops
(Kroger, Nystrom, O’Reilly, Noelle, Braver, & Cohen, in
preparation) — this was predicted from the model. This
kind of representational organization is critical to specific
aim 2, and is discussed in greater detail there. We also hope
to generate testable behavioural predictions by exploring
various manipulations in this task further in the model.

(iv) Basic Task Switching in the Wisconsin Card Sort Task
(WCST)

The WCST is the paradigmatic example of the task-
switching flexibility imparted by the PFC. It involves sorting
cards having symbols varying in shape, color, and size into
corresponding target piles according to one of these three
dimensions. The dimensional sorting rule is not told to the
participant, who must infer it based on feedback. After a
criterion number of successful sorts, the rule is changed
(again unbeknownst to the participant) and the number of
perseverative sorts according to the old rule is taken as a
measure of task-switching flexibility (the fewer the better).
People with frontal damage typically perseverate more than
healthy controls e.g., Grant & Berg, 1948; Milner, 1963;
Heaton, Chelune, Talley, Kay, & Curtiss, 1993, and three-
year old children also perseverate more than their four-
year old counterparts on a version of the task adapted for
children (e.g., Zelazo, Frye, & Rapus, 1996; Munakata &
Yerys, 2001).

A number of models have captured performance on these
task-switching tasks (Rougier & O‘Reilly, 2002; Morton &
Munakata, 2002; Dehaene & Changeux, 1991; Levine &
Prueitt, 1989). In our model, the critical mechanism was
a simple dopamine-based (TD) dynamic gating mecha-
nism that rapidly destabilized previously-maintained task-
relevant PFC representations and allowed a trial-and-error
search for new such representations to take place when the
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rule changed. The speed of this working memory updating in
the PFC component was faster than the slow accumulation
of weight changes in the posterior cortical component of
the model, meaning that the model with a damaged PFC
component exhibited more perseveration than the intact
network. We expect a similar mechanism to hold for the
PBWM model; as with the AX-CPT models, the difference
in gating mechanisms will be an important focus.

An aspect of the WCST that remains a challenge for the
proposed work is capturing the detailed cognitive operations
at work within a given trial as run with human subjects. In
our previous models, we have captured the essence of the
task by having the model select one out of the possible set of
dimensions from a given stimulus at a time. However, people
are required to actually place each card on the appropriate
matching target card pile — we propose that modeling this
process will require a temporally-extended action sequence
with an embedded working memory updating step (i.e.,
requiring selective updating).

(v) Complex Task Switching in the ID/ED Task

The intradimensional/extradimensional (ID/ED) task-
switching task extends the WCST in a number of interesting
ways. It allows for switching to occur at two different
levels (within and between stimulus dimensions) and in
two different ways (a shift to new stimuli, or reversal of
existing stimuli). Relevant data exists across studies with
monkeys, neurologically intact humans, frontal patients,
Parkinson’s patients, and Huntington’s patients (Rogers,
Andrews, Grasby, Brooks, & Robbins, 2000; Dias, Rob-
bins, & Roberts, 1997; Owen, Roberts, Hodges, Summers,
Polkey, & Robbins, 1993; Roberts, Robbins, & Everitt,
1988). The potential to compare the roles of the PFC
and BG across frontal and Parkinson’s patients should be
particularly informative for the PBWM model.

We have already modeled the data from monkey’s
with lesions to either ventromedial or dorsolateral areas
of PFC (O’Reilly, Noelle, Braver, & Cohen, 2002; Dias
et al., 1997). This data showed that ventromedial (orbital)
lesions produced selective deficits in intradimensional rever-
sals (IDR), while dorsolateral lesions produced selective
deficits in extradimensional shifts (EDS). We accounted
for this pattern within the top-down biasing framework in
terms of ventromedial areas representing detailed, featu-
ral information about the stimuli, while dorsolateral areas
encoded more abstract dimensional representations. Thus,
switching within dimensions was facilitated by the more
feature-specific ventromedial representations, and switching
between dimensions was facilitated by the more abstract
dorsolateral representations. In both cases, the underlying
mechanism of rapid updating in PFC, supported by the
dynamic gating mechanism, was critical.

In addition to replicating our existing model, we propose
to address the range of data observed across the various
patient populations studied in the ID/ED task. One con-
sistent finding across these studies is that extradimensional
shifting (EDS) is impaired by PFC damage in humans, but
intradimensional reversals (IDR) are not reliably impaired.
However, both EDS and IDR are impaired in unmedicated
Parkinson’s patients (Owen et al., 1993), while early-stage
Huntington’s patients primarily exhibit difficulties with EDS
and not IDR. Meanwhile, neuroimaging studies show PFC
activation for EDS but not IDR, which nevertheless activates
the basal ganglia (Rogers et al., 2000).

Broadly speaking, these results show that the human
PFC and BG are both important for task switching, con-
sistent with our framework. The EDS results are directly in
line with our existing model and should not pose a difficulty
for the PBWM model. The IDR results are more complex,
suggesting on balance a role for the BG, but not the PFC.
In keeping with our existing model, we wonder if perhaps
the regions of the PFC that maintain detailed, feature-
level information have not been appropriately targeted in
the frontal patient studies (e.g., these regions might be
coextensive with relatively posterior and lateral PFC areas
involved in language function — such patients typically
exhibit dense aphasia and cannot be easily tested in these
types of experiments). Consistent with this suggestion, the
neuroimaging study did find elevated blood flow in BA9/10,
but these results did not remain statistically significant after
correcting for multiple comparisons (Rogers et al., 2000). In
any case, these studies provide a rich dataset with which to
test our model.

(vi) Dynamics of Perceptual Attention in the Eriksen
Flanker Task

The Eriksen flanker task provides a test of the dynamics
of interaction between maintained PFC representations and
attentional processing in the posterior cortex. In this task,
participants see displays containing a central target item
flanked by distractor stimuli, which are either consistent or
inconsistent with the target (e.g., SSSSS, SSHSS, HHSHH,
HHHHH) (Eriksen & Eriksen, 1974). The simple goal of
the task is to identify the target item. Nevertheless, the
distractors influence processing, as evidenced by faster RT’s
for consistent displays and slower RT’s for inconsistent ones.
Furthermore, when RT’s are obtained at a range of durations
from short to long, accuracy in conflict conditions initially
goes below chance before rising to relatively high levels. This
indicates that the flankers initially have more control over
performance than the target, but this is overcome through
top-down biasing from the PFC for the central target
location. Thus, this task enables the time-course of top-
down influence to be measured, and fitting this data with the
model will provide important constraints on the dynamics
of attentional processing between PFC and posterior cortex.

In addition, the Eriksen task has been used to assess
the feedback of conflict monitoring systems (in the ante-
rior cingulate cortex) on performance on subsequent trials
(e.g., Carter, Braver, Barch, Botvinick, Noll, & Cohen,
1998; Botvinick, Nystrom, Fissel, Carter, & Cohen, 1999;
Botvinick, Braver, Barch, Carter, & Cohen, 2001). Our basic
PBWM model does not include this mechanism, but we plan
to incorporate it pending initial success in simulating single-
trial performance across the range of tasks. Thus, this task
straddles the core and extension phases.

(c) Paradigms to be Addressed in the Extended

Models

The following task paradigms will require extensions of the
core model, and are therefore to be addressed after an initial
model of the core phenomena has been developed.

(i) Familiarity vs. Active Maintenance in the ABCA/ABBA
Task

A given memory function can often be achieved in a number
of different ways in the brain, depending on the specific
task demands. In all the core paradigms, it is clear that the
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PFC/BG system is required. However, there is good reason
to believe that using the PFC/BG system is metabolically
costly relative to other forms of memory, and that its use
is subjectively experienced as effortful. Therefore, it would
be useful to explore whether a model can learn to use this
system only when necessary, relying on simpler, less costly
memory systems when possible, because this would likely
provide an explanation for a variety of behavioural findings.

We believe the two fundamental mechanisms for memory
are weight changes and maintained activations, and each has
its own strengths and limitations (e.g., weight changes are
enduring, but not as flexible, while activations are transient
but more flexible; O’Reilly & Munakata, 2000). Generally
speaking, we assume that transient, rapidly updated infor-
mation relies on activation-based maintenance, for which the
PFC/BG system is specialised. Nevertheless, there are some
such situations in which a weight-based signal can provide
a useful basis for task performance.

One context where this tradeoff has been explored is in
a variation of the widely-studied delayed-match-to-sample
task known as the ABCA/ABBA task (Miller, Erickson, &
Desimone, 1996; Miller & Desimone, 1994). Here, monkeys
were presented with a sequence of stimuli, and trained to
respond whenever the first stimulus repeated. Thus, ABCA
refers to a sequence of stimuli, where the final A is the
repeat of the first stimulus. Miller and colleagues expected
prefrontal working memory to be used to maintain this
A stimulus over the duration of intervening items, but
their neural recordings actually revealed that this task was
being solved via a weight-based familiarity signal encoded
in inferior-temporal (IT) cortex. However, when they ran
the ABBA version of the task, which contains an embedded
repeat of the B stimulus, this familiarity-based system
was fooled (the second B was familiar and thus triggered
responding, even though it wasn’t the first item). After
some amount of additional training, the monkeys succeeded
in solving the ABBA task, but this time by using actively
maintained PFC representations.

In addition to simulating this basic strategy shift, there
are detailed patterns of PFC and IT neural firing that can
be used to constrain and test the model. We have already
developed a model of how a single exposure to an item can
produce a robust familiarity signal in an IT-like network
(Norman & O’Reilly, 2003). This familiarity effect falls out
of the basic Leabra learning and activation mechanisms, but
requires a specific monitoring process to reliably detect the
global familiarity signal.

(ii) Higher Capacity, Generalisable Working Memory in the
Phonological Loop

It is likely that a substantial amount of everyday working
memory function derives from a specialised system for
actively maintaining verbal information called the “phono-
logical loop” (e.g., Baddeley, 1986; Baddeley, Gathercole, &
Papagno, 1998; Burgess & Hitch, 1999). This system is
thought to be capable of sequentially refreshing a number of
verbal (phonological) representations to maintain informa-
tion in an active state (e.g., somewhat like a continuously
repeating tape loop). When one encodes a phone number in
working memory, or someone’s name, or a relatively short
list of words in a laboratory study, the phonological loop is at
work. Neuroimaging and patient data show that this system
involves the PFC around Broca’s area, and a posterior
cortical area (supramarginal gyrus) thought to represent

phonological content (e.g., Paulesu, Frith, & Frackowiak,
1993; Shallice & Vallar, 1990).

Because verbal information is so overtrained, and there
are a finite number of phonemes that can be combined in so
many different ways, the phonological loop can have higher
capacity and greater flexibility for maintaining novel infor-
mation than other forms of working memory (O’Reilly &
Soto, 2002). Therefore, it represents an important target for
our model. However, the required overtraining on a large
space of language material is computationally demanding,
and requires that we initially develop this model separate
from the core model. Therefore, we propose to build on our
initial phonological loop model (O’Reilly & Soto, 2002) to
address a number of phenomena listed below. After this, we
will attempt to integrate this model with our core model,
and explore the role of the phonological loop in the core
task paradigms, and others described below.

Some of the signature data on the phonological loop
include (see Burgess & Hitch, 1999 for full details): a)
word list capacity is a function of word length, phonemic
similarity, word familiarity (and phonemic similarity to
known words for nonwords) and is affected by articulatory
suppression; b) serial position effects, including primacy
and recency effects; c) interactions between serial position
effects and presentation modality and phonemic similarity;
d) temporal grouping improves sequential order memory;
e) the preponderance of errors are in sequential ordering,
not in the items themselves; and f) items from previous
lists intrude at the same position in the current list. This
is clearly a highly constraining set of data, and the existing
model of Burgess and Hitch (1999) provides a clear standard
of comparison for our own efforts.

Our existing model of the phonological loop is based on
the principles behind the PBWM model, but with some of
the difficult learning work achieved by hand-coding because
the learning mechanisms had yet to be fully developed
(O’Reilly & Soto, 2002). This model demonstrated how
the highly-practiced nature of verbal short term memory,
combined with the limited number of different phonemes,
can enable this system to generalise well to novel phonolog-
ical sequences (e.g., over 90% correct performance on novel
sequences after training on less than 20% of the space).
Furthermore, we argued that these same properties should
give this system a significantly larger capacity than basic
limit of 3-4 items (Cowan, 2001). This model differs from
the Burgess and Hitch (1999) model by not requiring any
transient Hebbian associations during encoding — this gives
it more flexibility, but it remains to be seen how these
differences will impact the model’s ability to address the
data listed above.

(iii) Working Memory Scanning in the Sternberg Task

The classic Sternberg memory scanning task explores how
people access items maintained in working memory. Each
trial of the task involves presenting a variably-sized set
of items to be remembered, followed by a target item, to
which the participant is to respond Yes if the target was in
the memory set (positive case) and No otherwise (negative
case). The remarkable finding from this task is that reaction
times for both positive and negative trials scale equally
and linearly with the memory set size (each additional
item requires approximately 40msec of additional time)
(Sternberg, 1966). This suggests a process where people
sequentially scan memory items, using an exhaustive (non-
self-terminating) search for both positive and negative cases.
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This is surprising, as one might expect search to terminate
when a positive case is found, as is typical with visual search
paradigms.

This task has not to our knowledge been simulated in a
neurally-based model, and it presents a number of important
challenges. Simulating the process of sequential compari-
son of working memory items with a target item, based
strictly on internally-driven operations, will place important
demands on the PBWM model. Our initial interpretation
of this task is that it depends on the phonological loop.
The sequential process matches the sequential search process
observed in the Sternberg task quite well, and the highly
overtrained nature of this system may explain why it cannot
be interrupted after locating a match. Thus, we propose
to simulate the Sternberg task using our phonological-loop
augmented model.

(iv) Continuous Updating of Sequential Position Informa-
tion in the n-Back Task

The n-back task has become one of the most widely used
measures of working memory function, in part because it
is a difficult task that readily activates the PFC in neu-
roimaging studies (e.g., Braver, Cohen, Nystrom, Jonides,
Smith, & Noll, 1997; Cohen, Perlstein, Braver, Nystrom,
Noll, Jonides, & Smith, 1997; Smith & Jonides, 1998). Like
the AX-CPT and 1-2-AX tasks, the n-back involves the
sequential presentation of stimulus items. The participant
must detect a repetition of any stimulus that occurred n
steps earlier in the sequence (where n can be varied from
1-5; most people cannot perform well above 3). The 1-
back is relatively simple, requiring only the detection of an
immediate repetition. In the 2-back, the preceding 2 stimuli
must be maintained, and continuously updated with each
new stimulus, while also checking for the repetition. For
example, if the sequence starts out with MQABA, the 2nd
A is a target. If a B appeared next, it would also be a
target, and so on. This simultaneous updating of memory
for recent items (which must be maintained in sequential
order) combined with the repetition match checking, places
strong demands on the working memory system.

Like the Sternberg task (with which the n-back shares
a memory scanning component to detect repetition), the
n-back task likely loads heavily on the phonological loop
system (which is consistent with the neuroimaging data
showing Broca’s area activations; Braver et al., 1997; Cohen
et al., 1997; Smith & Jonides, 1998). The sequential ordering
capabilities of the phonological loop are particularly impor-
tant. Therefore, we propose to simulate the n-back using
our phonological-loop augmented model — just getting this
model to perform this difficult task will be a monumental
achievement.
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